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Complex distributions

p(X,Y,Z)

p(X) = / p(X,Y,Z)dYdZ =?

E,px)f(X) = / FX)p(X,Y,Z)dXdYdZ =?
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Distribution approximation

Consider a distribution p(x) from a complex distribution family.

The goal is to approximate it with a distribution ¢(x) from a simple
distribution family:

n

p(x) = H ti(x), t; € F; — complex family of distributions
1=1

n
q(x) = H fl(x), t; € Q; — simple family of distributions
=1
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Distribution approximation: naive approach

Bad ideal
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Distribution approximation: naive approach

Context Factor

Result

— Exact factor
— Approx factor
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Contextual approximation

Contextual approximation:

¢\ (2)Ei(2) = ¢V (2)ti()
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Contextual approximation

Context Factor

Result
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KL-divergence

A brief reminder: Kullback—Leibler divergence

KL(pllq) = /p(w) log 2%dw

Some properties:
o KL(pllq) = 0
e KL(p|lg) = 0 & p(x) = g(x) almost everywhere

@ Can be used to measure the difference between p and ¢, ...

@ ...but is not a metric and is not symmetric
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KL-projection

Contextual approximation:

KL-projection:

¢V (2)ti(x) = arg min KL(g" - t; || g) = projo[q" - ti]
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KL-projection in exponential family

Let O be a subset of exponential family with parameters 6:

q(x]0) = % exp(6” ¢(z))

o(x) = (¢1(x),. .., ¢m(x))T are sufficient statistics of Q.

In this case KL-projection on Q is equivalent to moment matching:

g= projg[f]

/Gbg dw—/@ x)dx, Vj=1..m
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EP algorithm

n ~
Initialize ¢ = [] ¢

i=1
Recalculate context for all factors: ¢\i(z) = q(x)/t;(x)
Update t; = projg[q\i i) /qV

©00 O

Repeat steps 2-3 until convergence

+ Good in practice: fast and accurate
— Poor theoretical evidence to its convergence or approximation accuracy

— Fails if moment-matching in proj operator is intractable
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Power EP motivation

EP fails if /Qﬁj(m)q\i(m)ti(:n)dx is intractable.

However, /gbj(:v)q\i(w)(ti(x))mdx may be tractable for some 7;.
For example:

q(z) is a Gaussian, ¢1(2) = =, ¢o(z) = 22

ti(z) is Student’s t-distribution, t;() = — 1
x

1
k 2 _
/1: x2+1N($|H’J Ydx =7

-1
/+ <1+1> Nl o) = [ 2 + )N (e | 0?)da
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Power EP

_ g@); @),
EP: 7.2) i(z) t}-(az)tl( )
Power EP (fj((xx)))" (ti(z))" ~ (i,if)))n (t;(x))"
\é () — q(z)
q ( ) (~z(x )77

+ Is applicable to a wider variety of models



Relevance Tagging Machine

We address the binary classification problem with binary features.

o (x;,¢;)! is the training set
o x; € {0,1}% is an object and ¢; € {0,1} is it's class label
e z;; =1 & x; is tagged by the tag j
o All tags affect the class label independently
Probabilistic model of the RTM:

d o
J
._193'
0, =Plc=1|z; =1), P(c=1|,6) = — —
057 + T1(1—0;)®
j=1 j=1
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ARD

Bayesian automatic relevance determination (ARD) approach.

@ Parameters are given independent priors

e Hyperparameters are trained by maximizing the evidence

Symmetrical Beta distribution:

aj ~ Beta(ej |aj7aj)’ Qj € [1, +00)

° ajzléHJMAP:%V[L
® a; =400 =0; =0.5=0; is removed from the model

Evidence maximization:

/P(C |X,0)p(0 | a)d® — max
«
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Likelihood approximation

€] X.8) HP c20) = [[10) = ()
n n d
_ Hgi(g) = H H Beta(6; | aij, bi;)
i=1

i=1j=1

d
[l 5701 g0

=1
[16;7 + T1(1—6;)™
=1 j=1
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Likelihood approximation

d —1
fl o5 g

t;(0)"" = j:dl y =
i flo-o

d
_ H 9;:1-]'(1—07;)(1 _ gj)fﬂz‘j(crlhr
j=1
d
+ 6,7 (1 — ;)"

J=1
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Power EP update for the RTM

i (0)ew — (proj[ma)l - q\i<e>1>
1 (©)

q\' (0

-1

t:(0)1 - ¢\(0) x ...

O<H9 ] 1_ B”—l_’_He j 1_ 32_1
Sufficient statistics of beta distribution p(z) = Beta(x | a,b):

¢(z) = (logz, log(1 —z))"
Their expectation (¢(z) is the digamma function):

]Ep(:r) logz = ¢<a> - ¢<a + b)>
]Ep(x) log(l - x) - ¢(b) - ¢(a + b)
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Power EP update for the RTM
Moment matching:
proj[t:(8) " - ¢"()] = H Beta(0; | Aij, Bij)
j=1
W(Aij) — (A + Bij) = 1
Y(Bij) — (Aij + Byj) = c2

It can be solved efficiently with 3-5 iterations of Newton's method [Minka,
Estimating a Dirichlet distribution, 2012].
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Convergence tricks

Power EP algorithm for the RTM:

¢V'(z) = q(z) - ti()

¢ _ [proiglg" - ;]
g\

The algorithm, written in this form, does not converge.

We used several tricks to improve its stability:
@ Damping
@ Sequential update of factors
© More damping
@ Addition of fixed prior distribution factors
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Convergence tricks
Damping

1 for k «+ 1 to maximum iteration number or until
convergence do

2 | 0 i=1; Vig\(z):=q""(z) ti(z) Vi

: i =17\ 1
jrew (P”qu\. 7 ]> vi
g\t

~ Yi ~ o~
t; = (tgld) . (t;?‘fw)1 TV, oy €]0,1)

3 end

Parameters of ¢; can be computed as a convex combination of old and new
ones.
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Convergence tricks

Sequential update of factors

1 for k «+ 1 to maximum iteration number or until
convergence do

E?ld = 7?2 \
fori+—1ton do

4 qnew( ) H tnew H i

. l 1 ~
¢\ (w) = ¢""(x) - ti(fﬂ)

N
Enew o (pron[q\Z ) ti 1])
q

5 end
6 | 1= (ffld) (BT v €0,1) Vi
7 end
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Convergence tricks
More damping

1 for k «+ 1 to maximum iteration number or until
convergence do

E?ld = 7?2 \
fori+—1ton do

A qnew( ) H tnew H #

. l 1 ~
¢V'(x) = ¢" " (x )'tz'( )

) S -1
(3 ° 7 q\z

(1—pi)
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Convergence tricks
Addition of fixed prior distribution factors

p(8]aP) HBeta9 |04J, ])

P(c|X,0)p(0|a’) = p(0|a’) H P(ci| @, 0) =

e

d
=p(0|a®) [ [ ] Beta(t; | ai;, bi;)

i=1j=1
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Other training methods for the RTM

e Approximate Expectation Propagation (EP)

e Coordinate-wise optimization of variational evidence lower bound (EM)
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Experiments
Synthetic data

ROC curve for feature selection task:
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Experiments

Sentiment analysis

Test set classification accuracy:
Power EP  EM EP

Dataset 1: | 0.9708 0.9659 0.9683
Dataset 2: | 0.7523  0.7294 0.7398
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