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Bayesian networks

Problem
overview

m Bayesian networks are good for encoding distributions.

m Problem: learning from scratch requires huge amounts of
computational resources and doesn't guarantee good result.

m Alternative: expert knowledge (still no guarantee, though).




Verification

Problem
overview

Problem:
m Learned network may be of low quality.

m Expert knowledge can be flawed.

Proposed verification proce-
dure:

m Look at various marginal
distributions.

m Use statistical testing to
check if they fit to data.



Exploration procedure

Problem
overview

Generate random Bayes net
Generate sample from this net
Extract subset distributions

[ Perform statistical testing

Repeat many times and examine false rejection portion.
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Where it all starts

Extracting
subset
distribution ceny X,'_]_) =

= [[ P(xilPar(x:))

i=1

m Some scopes of each
factor may be dummy.

m Graph is used to show
which ones are.




Basic variable elimination method

We can simply sum variables out one by one.
Extracting

subset

distribution

> I PxilPar(x)) =

xx€Dom(xy) i

[I [PeilPar(xi))])

{itizk,x ¢ Par(x;)}
> [P(Xk|Par(Xk))

{xx€Dom(xy)}

[T (PesIPar())])
Jixk€Par(x;) Summation
scope




Problems of variable elimination method

There are some drawbacks:

Extracting
subset

distribution m it has
exponential
complexity

m we lose
bayesian
network




Recovering Bayesian network structure

Assertion
Extracting

subset Distribution P(X \ {z}) factorizes over a graph G’, produced
istribution from graph G by connecting every child c of removed vertex z
with all vertices of the summation scope, preceding ¢ in some
fixed topological order.




Algorithm for recomputing CPD

Extracting
subset
distribution

initialize Py <— P(z|Par(z)), i < 1
take next variable c in topological order from Child(z)
Pi = Pj-1P(c|Par(c)),

P(xe|Par(x)) = s=5.

I+ i+1

[@ if there are still variables in Child(z) go to step 2;
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The idea of hypothesis testing

Hy: zero hypothesis, "default”.
Hy: alternative.

S: statistic.
el R: rejection region.
othesis . . I
testing Idea: pick R so that P(S € R|Hp) < a(significance level).

p-value : minimal significance level that allows to reject
particular hypothesis.

A

P(S[H))

P(SIHO)

=




Performing
hypothesis
testing

Pearson x? and g-Test

o k  (ne,—nPe.)?
Dic1 P

Pe.
G=2 Zf‘zl nP, Iog(nn—ej)

P - probability given Hg
F - observed counts

P F
el Pe1 ne1
e | Pe, Ne,
€k Pek Ne, :
|1 n

Figure: x2distribution



Multiple hypothesis testing

Coin tossing Food admixture
Coin is fair Admixture affects
: mice
ﬁye;;clr::s?f Coin is not fair Admixture does not
e affect mice
Rejection Equal results of all | Specialized test pro-
tosses cedure for some vital
signs in 2 groups of
mice
Procedure 1 Throw N times. Measure one type of
OK vital signs
Procedure 2 Make M people | Measure M types
Not OK throw N times each

Multiple hypothesis testing really makes a difference!



Bonferroni correction

N hypo’Fheses: HE, HE; . HY L HY
N significance levels: al; oalN
S N rejection regions: R%;...; RN
hypothesis N statistics: St;.... SN

testing

Probability spac

Idea: fix aj to be equal a/N.




Stepwise correction procedures

m sort hypotheses by p-values py.
m compare px with g9
m reject all Hé :i <r, whereris:
Performin .
Sedrn m Holm step-down: r = min({k : px > ﬁ}) —
testin
. m Hochberg step-up: r = max({k pr < N+1 k})
007 stepwise prucedures e
bonferroni
0.06 - p-value 7

hochberg rejections
holm rejections

0.05 bonferroni rejections

0.04 - B
0.03 B
0.02 - T
0.01 B
0 ! L L

0 2 4 6 8 10
Figure: example of rejection procedures
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Random graphs - Erdés—Rényi

First formulation: each edge can be added to the graph
independently of others with probability p.

Second formulation: random set of k edges is chosen
uniformly at random.

Generating ) -
random ° \

Bayesian net

Figure: 50 vertices, 100 edges



Random graphs - Barabasi—Albert

Procedure starts with fully connected graph with n vertices.
Each new vertex added to the graph is connected to n old
vertices.

Probability to chose a particular old vertex to connect to is
proportional to its degree.

Generating
random
Bayesian net

Figure: 50 vertices, 97 edges



Dirichlet and Beta distributions

Dirichlet distribution is a distribution over n-dimensional vectors
of positive numbers that sum to one - tabular distributions.

Generating K 4 uifi_a.s—

random 1 ai—1 Z;ﬁ;;:
Bayesian net Dlr X. o) = —— HX i~ 3 a=p=10
( 9 ) B(X) 1] i
i=1 g7
2-dimensional case is .
referred to as Beta- . " " . " \

distribution.

Figure: Beta distribution
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2,10 vertices, 9 edges, Dir(x, 1)

Erdés—Rényi

Barabasi—-Albert,
rect order

di-

Pairs

Results

fwer distribution for pairs.

fwer distribution for pairs.
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2,10 vertices, 17-18 edges, Dir(x, 1)

Erdés—Rényi

Verse

Barabasi—-Albert,
order

in-

Pairs

Results

fwer distribution for pairs.

fwer distribution for pairs.
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Simple hypothesis testing experiment - 100 000
experiments, 100 samples per experiment
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Results

Figure: distribution with 8 values ~ Figure: distributiohi with 16 values




G — test, 10 vertices, 9 edges, Dir(x, 1)
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G — test, 10 vertices, 17-18 edges, Dir(x,1)

Erdés—Rényi

Barabasi—Albert, ran-

dom order

Pairs

Results

fwer distribution for pairs.

fwer distribution for pairs.
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G — test, 10 vertices, 9 edges, Dir(x,0.2)

Erdés—Rényi

Barabasi—Albert, ran-
dom order

Pairs

Results

fwer distribution for pairs.

fwer distribution for pairs.
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G — test, 10 vertices, 17-18 edges, Dir(x,0.2

Erdés—Rényi

dom order

Barabasi—Albert, ran-

Pairs

Results

fwer distribution for pairs.

fwer distribution for pairs.
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Conclusions

It's much better to use g-Test than Y test.

Graph does not play a big role.

Results

]
m It does not matter which correction procedure we choose.
]
]

Strength of variable interdependence does play an
important role.



The End
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