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Stochastic and Full Gradient Descent

» We want to solve the following optimization problem:
Q) = 1S #(6) » mi
== ; min
n feRr?

i=1

Suppose all f; are differentiable and we know their gradients. What
methods do we know for solving this problem?

Full Gradient Descent

v

Ors1 = Ok — YV Q(0k)

v

Stochastic Gradient Descent

o
+1

9k+1 = ek - ’kafik(ek)7 Tk = k

What is the difference?

v
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Explicit and Implicit methods

» We can rewrite FG and SGD schemes in implicit style
» Implicit FG
Oks1 = Ok — YV Q(Ok41)
» Implicit SGD
Oks1 = Ok — 7V Hi(Okt1)
» Advantages: stability for learning rate setting and usually better
results

» Drawbacks: more complicated implementation, more
time-consuming iterations
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Learning rate: example
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Stochastic Average Gradient (SAG)

» The SAG method incorporates both SGD and FG: it has the low
iteration cost of SGD, but makes gradient step with respect to the
approximation of the full gradient

» The SAG iterations take the following form

n
V k
Ory1 = Ok — ;Zg; )
i=1
where at each iteration a random index iy is selected and we set
g = ﬂ:(&k) if =1,
! g,-kf1 otherwise

» To achieve low iteration cost we just need to store the table of
gradients g¥ and their sum
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Learning rate for SAG

» If the following inequality holds
lh(y) = h(OII < Llly — X[, Vx,y

then L is called Lipschitz constant for a function h

» If L is Lipschitz constant for all f’ then it claims that SAG achieves
FG convergence rates with v = 16L But in practice authors use
N=7 that gives even better results (higher v may be better, but

not always)

» In general L will not be known, but we can use a basic line-search:
we start with an initial estimate Lg, and at each iteration we double
this estimate while the following inequality is not satisfied

(0= £500) < 700 - 51RO

which must be true if Ly is valid.
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Implicit SAG

» Now review our own research

» We have that IFG and ISGD outperform their explicit versions and
are more stable for learning rate setting

» We try to introduce implicitness for SAG as follows

v En k
0 = 0 - H
k+1 k n — 8>

& = g,-kf1 otherwise

k { f,-i(0k+1) if i= ik,
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Models

» Linear regression: We solve the following optimization problem:

1¢ (x"0)? T :
n;( 5 —yix;' 0 — min

where x; € R? are features and y; € R is response. Here we generate
synthetic data: x; ~ N(0, Vi), y; ~ N(x0,1),d = 20. We generate
n = 10000 objects

» Logistic regression: We solve the following optimization problem:

Aoy 1T - .

§||9H +- ;'%(1 +exp(—y;x; 0)) = min,
where x; € R? are features and y; € {—1,1} is a label for binary
classification. We use the quantum dataset obtained from the KDD
Cup 2004 website. ! It contains n = 50000 objects with d = 78

Lhttp://osmot.cs.cornell.edu/kddcup
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Considered methods

For aforemetioned models we will compare the following optimization
methods:

» SGD and Implicit SGD
» FG and Implicit FG

» SAG and Implicit SAG
>

Moreover we will compare our methods to the state-of-the-art
method BFGS

For all the methods we tune a learning rate (where it is required)
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Implementation remarks

» In linear regression for every method we can derive all the formulae
analytically

» In logistic regression we can’t do this. Therefore, we need to solve
additional optimization problem at each step. ISGD and ISAG
require solving an one-dimensional equation that we solve with
Newton method; IFG requires solving a system of nonlinear
equations that we solve with Newton-Krylov method
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Experiments, Linear regression

) Linear regression, n =10000
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Experiments, Logistic regression

Logistic regression, n =50000 (100% of data)
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Conclusion

» Implicit methods have a big advantage over their explicit antagonists
except SAG

» Implicit FG shows very impressive results, but it can be applied only
in the case of small n and d

» ISAG and SAG show similiar results
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Future work

» We will try to change our intuition of implicit SAG to make it closer
to implicit FG

» We will try to apply optimization scheme with mini-batches for
ISGD and SAG/ISAG
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