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The central problem of Statistical Learning

X = {x1, . . . , xℓ} — a finite training set of objects,
A — a set of classifiers,

a = argmin
a∈A

Err(a,X ) — the empirical risk minimization,

or, more commonly,

a = µ(X ) — a learning algorithm µ trains a classifier a on a set X .

The Generalization Problem:

1 How to bound a testing error Err(a, X̄ ), where
X̄ = {x ′1, . . . , x

′
k} is an independent testing set?

2 How to design learning algorithms that generalize well,
i.e. have a small testing error Err(a, X̄ ) almost always?
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The classical approach to Generalization Bounds

In classical approach one find the uniform convergence conditions:

PX̄

(

sup
a∈A

∣

∣P(a)− Err(a,X )
∣

∣ ≥ ε
)

≤ GenBound(ℓ, k ,A, ε)

where P(a) = EX̄Err(a, X̄ ) [Vapnik, Chervonenkis, 1971].

The Problem:

GenBound may be very loose: ∼ 105..1011 in realistic cases

To tackle the problem we

1 modify the functional at the left-side of the inequality

2 propose a combinatorial approach to get the right-side bound
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Modifying the functional (step 1 from 4)

In classical approach one find the uniform convergence conditions:

PX

(

sup
a∈A

∣

∣P(a)− Err(a,X )
∣

∣ ≥ ε
)

≤ GenBound(ℓ, k ,A, ε)

In combinatorial approach instead of a probability of error P(a)
we bound a testing error:

PX ,X̄

(

sup
a∈A

∣

∣Err(a, X̄ )− Err(a,X )
∣

∣ ≥ ε
)

≤ GenBound(ℓ, k ,A, ε)

Motivation:

we bound an empirically measurable quantity of overfitting:

δ(a,X , X̄ ) = Err(a, X̄ )− Err(a,X )

we remove a redundant technical step of symmetrization that
weakens the bound without adding a sense to the result
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Modifying the functional (step 2 from 4)

In classical approach one find the uniform convergence conditions:

PX

(

sup
a∈A

∣

∣P(a)− Err(a,X )
∣

∣ ≥ ε
)

≤ GenBound(ℓ, k ,A, ε)

In combinatorial approach instead of supremum over A
we use a learning algorithm µ:

PX ,X̄

(

∣

∣Err(µ(X ), X̄ )− Err(µ(X ),X )
∣

∣ ≥ ε
)

≤ GenBound(ℓ, k , µ, ε)

Motivation:

we remove the most restrictive condition from the functional

we discard classifiers irrelevant to a given learning task

we take into account the learning algorithm µ

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of overfitting 6 / 44



Combinatorial framework for generalization bounds
Combinatorial theory of overfitting

Applications to learning algorithms design

Overfitting
Links to other approaches
Overfitting and complexity measures

Modifying the functional (step 3 from 4)

In classical approach one find the uniform convergence conditions:

PX

(

sup
a∈A

∣

∣P(a)− Err(a,X )
∣

∣ ≥ ε
)

≤ GenBound(ℓ, k ,A, ε)

In combinatorial approach instead of usual i.i.d. assumption
we use a uniform distribution over all partitions X

L = X ⊔ X̄ :
1

C ℓ
L

∑

X⊂X
L

|X |=ℓ

[

∣

∣Err(µ(X ), X̄ )−Err(µ(X ),X )
∣

∣ ≥ ε
]

≤ GenBound(XL, µ, ε)

Motivation:

we make both sides of the inequality data-dependent and
empirically measurable

we remove a redundant step of integration over object space
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Modifying the functional (step 4 from 4)

In classical approach one find the uniform convergence conditions:

PX

(

sup
a∈A

P(a)− Err(a,X ) ≥ ε
)

≤ GenBound(ℓ, k ,A, ε)

In combinatorial approach instead of two-side deviation
we remove |·| and estimate one-side deviation:

PX∼XL

[

Err(µ(X ), X̄ )− Err(µ(X ),X ) ≥ ε
]

≤ GenBound(XL, µ, ε)

Motivation:

we discard a non-interesting case of negative overfitting

Finished: we defined the probability of large overfitting
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Learning with binary loss

X
L = {x1, . . . , xL} — a finite universe set of objects

A = {a1, . . . , aD} — a finite set of classifiers

I (a, x) = [classifier a makes an error on object x ] — binary loss

Error matrix of size L×D, all columns are distinct:
a1 a2 a3 a4 a5 a6 · · · aD

x1 1 1 0 0 0 1 · · · 1 X — observable
. . . 0 0 0 0 1 1 · · · 1 training sample
xℓ 0 0 1 0 0 0 · · · 0 of size ℓ

xℓ+1 0 0 0 1 1 1 · · · 0 X̄ — hidden
. . . 0 0 0 1 0 0 · · · 1 testing sample
xL 0 1 1 1 1 1 · · · 0 od size k = L− ℓ

a 7→
(

I (a, x1), . . . , I (a, xL)
)

— binary error vector of classifier a

ν(a,X ) = 1
|X |

∑

x∈X

I (a, x) — error rate of a on a sample X ⊂ X
L
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Example. The error matrix for a set of linear classifiers

1 vector having no errors

no errors

x1 0
x2 0
x3 0
x4 0
x5 0
x6 0
x7 0
x8 0
x9 0
x10 0
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Example. The error matrix for a set of linear classifiers

1 vector having no errors
5 vectors having 1 error

no errors 1 error

x1 0 1 0 0 0 0
x2 0 0 1 0 0 0
x3 0 0 0 1 0 0
x4 0 0 0 0 1 0
x5 0 0 0 0 0 1
x6 0 0 0 0 0 0
x7 0 0 0 0 0 0
x8 0 0 0 0 0 0
x9 0 0 0 0 0 0
x10 0 0 0 0 0 0
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Example. The error matrix for a set of linear classifiers

1 vector having no errors
5 vectors having 1 error
8 vectors having 2 errors

no errors 1 error 2 errors

x1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 . . .
x2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 . . .
x3 0 0 0 1 0 0 0 1 1 0 0 0 0 1 . . .
x4 0 0 0 0 1 0 0 0 1 1 0 0 0 0 . . .
x5 0 0 0 0 0 1 0 0 0 1 1 1 0 0 . . .
x6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 . . .
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
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Probability of large overfitting

µ : X 7→ a — learning algorithm
ν
(

µX ,X
)

— training error rate
ν
(

µX , X̄
)

— testing error rate
δ(µ,X ) ≡ ν

(

µX , X̄
)

− ν
(

µX ,X
)

— overfitting of µ on X and X̄

Axiom (weaken i.i.d. assumption)

X
L is not random, all partitions X

L = X ⊔ X̄ are equiprobable,
X — observable training sample of a fixed size ℓ,
X̄ — hidden testing sample of a fixed size k , L = ℓ+ k

Def. Probability of large overfitting

Qε(µ,X
L) = P

[

δ(µ,X ) ≥ ε
]

=
1

C ℓ
L

∑

X⊂XL

[

δ(µ,X ) ≥ ε
]
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Bounding problems

Probability of large overfitting:

Qε(µ,X
L) = P

[

δ(µ,X ) ≥ ε
]

≤?

Probability of large testing error:

Rε(µ,X
L) = P

[

ν(µX , X̄ ) ≥ ε
]

≤?

Expectation of OverFitting:

EOF(µ,XL) = E δ(µ,X ) ≤?

Expectation of testing error (Complete Cross-Validation):

CCV(µ,XL) = E ν
(

µX , X̄
)

≤?
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Links to Cross-Validation

Expected testing error also called Complete Cross-Validation
(taking expectation is equivalent to averaging over all partitions):

CCV(µ,XL) = E ν
(

µX , X̄
)

=
1

C ℓ
L

∑

X⊂XL

ν
(

µX , X̄
)

Usual cross-validation techniques (e.g. hold-out, t-fold, q×t-fold,
partition sampling, etc.) can be viewed as empirical measurements
of CCV by averaging over a representative subset of partitions.

Leave-One-Out is equivalent to CCV for the case k = 1.

:) Combinatorial functionals Qε, Rε, CCV, EOF can be easily
measured empirically by generating ∼ 103 random partitions.
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Links to Local Rademacher Complexity

Def. Local Rademacher complexity of the set A on X
L

R(A,XL) = Eσ sup
a∈A

2

L

L
∑

i=1

σi I (a, xi ), σi =

{

+1, prob. 1
2

−1, prob. 1
2

σ1, . . . , σL — independent Rademacher random variables.

Expected overfitting is almost the same thing for the case ℓ = k :

EOF(µ,XL) = E sup
a∈A

2

L

L
∑

i=1

σi I (a, xi ), σi =

{

+1, xi ∈ X̄

−1, xi ∈ X

if we set µ to overfitting maximization (very unnatural learning!):

µX = argmax
a∈A

(

ν
(

a, X̄
)

− ν
(

a,X
)

)
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Links to usual SLT framework

Usual probabilistic assumptions:
X
L is i.i.d. from probability space 〈X , σ,P〉 on infinite X

Transferring of combinatorial generalization bound to i.i.d.
framework first used in (Vapnik and Chervonenkis, 1971):

1 Give a combinatorial bound on probability of large overfitting:

PX∼XL

[

δ(µ,X ) ≥ ε
]

= Qε(µ,X
L) ≤ η(ε,XL)

2 Take expectation on X
L:

PX∼X ℓ

X̄∼X k

[

δ(µ,X ) ≥ ε
]

= EXL Qε(µ,X
L) ≤ EXL η(ε,XL).
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(No) Links to Transductive Learning

In both cases data are partitioned on two subsets, but
(training ⊔ testing) 6= (labeled ⊔ unlabeled)

In transductive learning:

the aim is to get a semi-supervised data clustering,

labels for the second subset are unknown,

learning algorithm uses both labeled and unlabeled data.

In our combinatorial approach:

the aim is to get generalization bounds,

labels for both training and testing subsets are known,

learning algorithm can not use the testing set.
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Vapnik-Chervonenkis bound

Theorem

For any X
L, µ, A and ε ∈ (0, 1)

Qε(µ,X
L)

uniform
bound
≤ P

[

sup
a∈A

δ(a,X ) ≥ ε
]

union
bound
≤

∑

a∈A

Qε(a,X
L)

approxi-
mation
≤ |A| · 3

2 exp
(

−ε2ℓ
)

, for ℓ = k .

|A| — Shattering Coefficient,
|A| ≤ C 0

L + C 1
L + · · ·+ Ch

L , h = VCdim(A)

Usually this bound is overestimated by 105–1011 times. Why?
1) uniform bound is loose if A is split by ν(a,XL)
2) union bound is loose if most classifiers are similar or connected
3) approximation bound is not so loose
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Monotone chain of classifiers

One-dimensional threshold classifier (decision stump):

ad(x) = [x ≥ θd ], d = 0, . . . ,D

Example:
2 classes {•, ◦}
6 objects

//

x
•

x4
•

x5
•

x6
◦

x1
◦

x2
◦

x3
�

θ0

�

θ1

�

θ2

�

θ3

Loss matrix:
a0 a1 a2 a3

x1 0 1 1 1
x2 0 0 1 1
x3 0 0 0 1
x4 0 0 0 0
x5 0 0 0 0
x6 0 0 0 0
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Experiment with monotone chain of classifiers

ℓ = k = 100, ε = 0.05, N = 1000 Monte-Carlo partitions.

split not split

co
n
n
ec

te
d

n
o
t

co
n
n
ec

te
d

0 20 40 60 80 100 120 140 160 180 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|A|

Probability of overfitting

With both splitting and connectivity a huge set does not overfit

With no splitting and connectivity 30 classifiers may overfit
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Experiment with monotone chain of classifiers

ℓ = k = 100, ε = 0.05, N = 1000 Monte-Carlo partitions.

split not split

co
n
n
ec

te
d

n
o
t

co
n
n
ec

te
d

0 50 100 150 200

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

|A|

Complete Cross-Validation

The local complexity measure should depend on both splitting
and connectivity properties of the set
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Splitting-Connectivity graph (1-inclusion graph)

Define two binary relations on classifiers:
partial order a ≤ b: I (a, x) ≤ I (b, x) for all x ∈ X

L;
precedence a ≺ b: a ≤ b and Hamming distance ‖b − a‖ = 1.

Definition (SC-graph)

Splitting and Connectivity (SC-) graph 〈A,E 〉:
A — a set of classifiers with distinct binary error vectors;
E =

{

(a, b) : a ≺ b
}

.

Properties of the SC-graph:

each edge (a, b) is labeled by an object xab ∈ X
L such that

0 = I (a, xab) < I (b, xab) = 1;

multipartite graph with layers
Am =

{

a ∈ A : ν(a,XL) = m
L

}

, m = 0, . . . , L+ 1;
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Example. Error matrix and SC-graph for a set of linear classifiers

layer 0

layer 1

layer 2

layer 0

x1 0
x2 0
x3 0
x4 0
x5 0
x6 0
x7 0
x8 0
x9 0
x10 0
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Example. Error matrix and SC-graph for a set of linear classifiers

layer 0

layer 1

layer 2

layer 0 layer 1

x1 0 1 0 0 0 0
x2 0 0 1 0 0 0
x3 0 0 0 1 0 0
x4 0 0 0 0 1 0
x5 0 0 0 0 0 1
x6 0 0 0 0 0 0
x7 0 0 0 0 0 0
x8 0 0 0 0 0 0
x9 0 0 0 0 0 0
x10 0 0 0 0 0 0
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Example. Error matrix and SC-graph for a set of linear classifiers

layer 0

layer 1

layer 2

layer 0 layer 1 layer 2

x1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 . . .
x2 0 0 1 0 0 0 1 1 0 0 0 0 0 0 . . .
x3 0 0 0 1 0 0 0 1 1 0 0 0 0 1 . . .
x4 0 0 0 0 1 0 0 0 1 1 0 0 0 0 . . .
x5 0 0 0 0 0 1 0 0 0 1 1 1 0 0 . . .
x6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 . . .
x7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . .
x8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
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Connectivity and splitting coefficients of a classifier

Def. Connectivity coefficient of a classifier a ∈ A:
u(a) = #

{

xab ∈ X
L : a ≺ b

}

— up-connectivity,
d(a) = #

{

xba ∈ X
L : b ≺ a

}

— down-connectivity.

Def. Splitting coefficient (inferiority) of a classifier a ∈ A

q(a) = #
{

xcb ∈ X
L : ∃b c ≺ b ≤ a

}

Splitting coefficient:
d(a) ≤ q(a) ≤ Lν(a,XL)

Example:
u(a) = #{x3 , x4} = 2
d(a) = #{x1 , x2} = 2
q(a) = #{x1 , x2} = 2

 

m - 1

m

m + 1

 a

x1 x2

x3 x2 x1 x4

x5 x2 x3 x4 x1 x6

x7 x2 x5 x4 x3 x6 x1 x8
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The Splitting–Connectivity (SC-) bound

Empirical Risk Minimization (ERM) — learning algorithm µ:

µX ∈ A(X ), A(X ) = Argmin
a∈A

ν(a,X )

Theorem (SC-bound)

For any X
L, A, ERM µ, and ε ∈ (0, 1)

Qε ≤
∑

a∈A

C ℓ−u
L−u−q

C ℓ
L

H
ℓ−u,m−q
L−u−q (ε) ,

where m = Lν(a,XL), u = u(a), q = q(a),

H
ℓ,m
L (ε) =

⌊(m−εk)ℓ/L⌋
∑

s=0

C s
mC

ℓ−s
L−m

C ℓ
L

— hypergeometric tail function.
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The properties of the SC-bound

Qε ≤
∑

a∈A

C ℓ−u
L−u−q

C ℓ
L

H
ℓ−u,m−q
L−u−q

(ε)

1 If |A| = 1 then SC-bound gives an exact estimate of testing
error for a single classifier:

Qε = P
[

ν(a, X̄ )− ν(a,X ) > ε
]

= H
ℓ,m
L (ε)

ℓ=k

≤ 3
2e

−ε2ℓ

2 Substitution u(a) ≡ q(a) ≡ 0 transforms the SC-bound into
Vapnik–Chervonenkis bound:

Qε ≤
∑

a∈A

H
ℓ,m
L

(ε)
ℓ=k

≤ |A| · 3
2e

−ε2ℓ
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The properties of the SC-bound

Qε ≤
∑

a∈A

C ℓ−u
L−u−q

C ℓ
L

H
ℓ−u,m−q
L−u−q

(ε)

4 The probability to get a classifier a as a result of learning:

P[µX = a] ≤
C ℓ−u
L−u−q

C ℓ
L

5 The contribution of a ∈ A decreases exponentially by:
u(a) ⇒ connected sets are less subjected to overfitting;
q(a) ⇒ only lower layers contribute significantly to Qε.

6 The SC-bound is exact for some nontrivial sets of classifiers.
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Sets of classifiers with known combinatorial bounds

Model sets of classifiers with exact SC-bound:

monotone and unimodal n-dimensional lattices (Botov, 2010)

pencils of monotone chains (Frey, 2011)

intervals in boolean cube and their slices (Vorontsov, 2009)

Hamming balls in boolean cube and their slices (Frey, 2010)

sparse subsets of lattices and Hamming balls (Frey, 2011)

Real sets of classifiers with tight computable SC-bound:

conjunction rules (Ivahnenko, 2010)

linear classifiers (Sokolov, 2012)

decision stumps or arbitrary chains (Ishkina, 2013)

Real sets of classifiers with exact computable CCV bound:

k nearest neighbor classification (Vorontsov, 2004; Ivanov, 2009)

isotonic separation (Vorontsov and Makhina, 2011; Guz, 2011)
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The Local Complexity Regularization

Main steps to use combinatorial Splitting-Connectivity bound:

1 Calculate SC-bound anyway (e.g. via random walks):

P
[(

µX , X̄
)

− ν
(

µX ,X
)

≥ ε
]

≤ SCbound(ε;A,XL) ≡ η

2 Invert the SC-bound: with probability at least 1− η

ν
(

µX , X̄
)

≤ ν
(

µX ,X
)

+ ε(η;A,XL)

3 Use ε(η;A,XL) as a penalty for features or model selection

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds

for Threshold Conjunction Rules // LNCS. PReMI’11, 2011. Pp. 66–73.
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Splitting gives an idea of effective SC-bound computation

All classifiers A

(global complexity)
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Splitting-Connectivity bounds
Model sets (overview)
Bound computation and usage

SC-bound computation via Random Walks

1. Learn a good classifier
2. Run a large number of short walks to get a subset B ⊂ A

3. Compute a partial sum Qε ≈
∑

a∈B

summand(a)

Special kind of Random Walks for multipartite graph:
1) based on Frontier sampling algorithm
2) do not permit to walk in higher layers of a graph
3) estimate contributions of layers separately

Simple random walk: Random walk with gravitation:
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Splitting-Connectivity bounds
Model sets (overview)
Bound computation and usage

Making bounds observable

SCbound(µ,XL) depends on a hidden set X̄ , then we use
SCbound(µ,X ) instead.
Open problems: is it correct? why? may be not always?

Really EOF(µ,X ) is well concentrated near to EOF(µ,XL):
Experiments on model data, L = 60, testing sample size K = 60

L = K = 60
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Ensembles of Conjunction Rules
Ensembles of low-dimensional Linear Classifiers
Comparing with state-of-art PAC-Bayesian bounds

Ensemble learning

2-class classification problem:
(xi , yi )

L
i=1 — training set, xi ∈ R

n, yi ∈ {−1,+1}

Ensemble — weighted voting of base weak classifiers bt(x):

a(x) = sign

T
∑

t=1

wtbt(x)

Main idea is to apply generalization bound
as features selection criterion in base classifiers

Our goals:
1) to reduce overfitting of base classifiers
2) to reduce the complexity of composition T
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ComBoost: Committee boosting

Instead of objects reweighting ComBoost trains each base classifier
on the training subset X ′ ⊂ X in order to augment margins of the
ensemble as much as possible:

X ′ =
{

xi ∈ X : M0 ≤ Margin(i) ≤ M1

}

Margin(i) = yi

T
∑

t=1

wtbt(xi ).
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Learning ensembles of Conjunction Rules

Conjunction rule is a simple well interpretable 1-class classifier:

ry (x) =
∧

j∈J

[

fj(x) ≶j θj
]

,

where fj(x) — features
J ⊆ {1, . . . , n} — a small subset of features
θj — thresholds
≶j — one of the signs ≤ or ≥
y — the class of the rule

Weighted voting of rule sets Ry , y ∈ Y :

a(x) = argmax
y∈Y

∑

r∈Ry

wr r(x)

We use SC-bounds to reduce overfitting of rule learning
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Experiment on UCI real data sets. Results

tasks

Algorithm austr echo heart hepa labor liver

RIPPER-opt 15.5 2.97 19.7 20.7 18.0 32.7

RIPPER+opt 15.2 5.53 20.1 23.2 18.0 31.3

C4.5(Tree) 14.2 5.51 20.8 18.8 14.7 37.7

C4.5(Rules) 15.5 6.87 20.0 18.8 14.7 37.5

C5.0 14.0 4.30 21.8 20.1 18.4 31.9

SLIPPER 15.7 4.34 19.4 17.4 12.3 32.2

LR 14.8 4.30 19.9 18.8 14.2 32.0

our WV 14.9 4.37 20.1 19.0 14.0 32.3

our WV + CS 14.1 3.2 19.3 18.1 13.4 30.2

Two top results are highlighted for each task.

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds
for Threshold Conjunction Rules // LNCS. PReMI’11, 2011. Pp. 66–73.
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Liner classifiers and ensembles

Linear classifier: a(x) = sign〈w , x〉
Ensemble of low-dimensional linear classifiers

a(x) = sign
T
∑

t=1

th〈wt , x〉

Random Walks for SC-bound computation
1) find all neighbor classifiers in the dual space:

2) lookup along random rays
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Experiment 1: ComBoost ensemble of linear classifiers

statlog waveform wine faults

ERM + MCCV 85,35 87,56 71,63 73,62

ERM + SC-bound 85,08 87,66 71,08 71,65

LR + MCCV 84,04 88,13 71,52 70,86

LR 80,77 87,34 71,49 71,09

PacBayes DD 82,13 87,17 64,68 67,67

The percentage of correct predictions on testing set (averaged
over 5 partitions). Two top results for every task are shown in bold.

Feature selection criteria:
ERM — learning by minimizing error rate from subset
of classifiers sampled from random walks

LR — learning by Logistic Regression

MCCV — Monte-Carlo cross-validation

DD — PAC-Bayes Dimension-Dependent bound (Jin, 2012)
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Experiment 2: comparing bounds for Logistic Regression

All bounds are calculated from subset generated by random walk

MC — Monte-Carlo bound (very slow)

SC — Splitting-Connectivity bound

VC — Vapnik–Chervonenkis bound

DD — Dimension-Dependent PAC-Bayes bound (Jin, 2012)

UCI Task MC SC VC PAC DD

glass 0.115 0.146 0.356 0.913
liver 0.095 0.533 0.595 1.159
ionosphere 0.083 0.149 0.238 1.259
wdbc 0.052 0.070 0.136 0.949
australian 0.043 0.244 0.277 0.798
pima 0.045 0.373 0.410 0.823

Conclusions:
1) combinatorial bounds are much tighter than PAC-Bayes bounds
2) SC-bound initially proved for ERM fit well for Logistic Regression
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Conclusions

Combinatorial framework

gives tight (in some cases exact) generalization bounds

that can be computed approximately from Random Walks

and gives more accurate base classifiers in Ensemble Learning

Restrictions:

binary loss

computational costs

low sample sizes, low dimensions

Further work:

more effective approximations

bigger sample sizes, bigger dimensions

more applications

Konstantin Vorontsov voron@forecsys.ru Combinatorial theory of overfitting 43 / 44



Questions?

Konstantin Vorontsov
vokov@forecsys.ru

www.MachineLearning.ru/wiki (in Russian):

Участник:Vokov
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