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Dimensionality reduction

Feature selection / Feature extraction
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(a) feature selector (b) feature extractor

Feature extraction: find transformation of original data which
extracts most relevant information for machine learning task.

We will consider unsupervised dimensionality reduction methods,

which try to preserve geometrical properties of the data.
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Applications of dimensionality reduction

Applications:
@ visualization in 2D or 3D

@ reduce operational costs (less memory, disc, CPU usage on
data transfer)

e remove multi-collinearity to improve performance of
machine-learning models
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Categorization

Supervision in dimensionality reduction:
@ supervised (such as Fisher's direction)
@ unsupervied

Mapping to reduced space:
@ linear

@ non-linear
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Supervised dimensionality reduction

Fisher’s linear discriminant

Problem statement

o Standard linear classification decision rule

1, wix>—-w

c=
2, wix<w
is equivalent to

@ dimensionality reduction to 1-dimensinal space (defined by w)
@ making classification in this space

@ Idea of Fisher's LDA: find direction, giving most class
discriminative projections.
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Supervised dimensionality reduction

Fisher’s linear discriminant

Possible realization

o Classification between wy and w>.
@ Define G ={i: x;cw1}, G ={i:x €wy} and

Naive solution: D AP

{(Nl — p2)% — maxy, ,,// ,( _

Iwl =1 4'////' -
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Fisher’s linear discriminant

Fisher's LDA

@ Define projected within class variances:

51 = Z(WTX,, — WTm1)2, Sy = Z(WTX,, — Wng)2

neCy neC

_ 2
o Fisher's LDA criterion: ~ Wi=#2)" _y may
51+52
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Supervised dimensionality reduction

Fisher’s linear discriminant

Equivalent representation

(1 — /12)2 o (WTml - WT’"2)2

s$+s5 Yonec,(WTxn —wTm )2 +37 o (wlx, —wTmy)?
2
[WT(ml — mg)]
2 2
Ponec W (xa — m)]" 4+ 30 e, W7 (%0 — my)]
N WT(ml — mz)(ml — mz)TW

oW [ e, 0 = m) (i — m)T + 3 e, (o — ma)(xo — m2) T w

B w! Sgw
 wlSyw
Sg = (m —m)(m — mz)T
Sw o= D (n—m)a—m)" + > (xa—m)(xn—m2)"
neCy neC
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Fisher’s linear discriminant

Fisher's LDA solution

;
Q(w) = :/"T;f/"‘;’/ — Maxy,

Using property that % (WTAW) = 2Aw for any
Ac RIK AT = A

dQ(w)
dw
which is equivalent to

x 25gw |:WTSWW] -2 |:WTSBw:| Sww =20

[WTSWW} Spw = [WTSBWj| Sww

So
W X SQ/ISBW x Sﬁ/l(ml —my)
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Supervised discriminant analysis

|dea of supervised discriminant analysis (SDA)

@ We can find directions wq, ws, ...wp, projections on which best
separate classes.

o Ways to find w:

o Fisher's LDA
o Any linear classification (w, x) 2 threshold gives valuable
supervised 1-D dimension w.

@ We can find an orthonormal basis of such directions.
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Supervised discriminant analysis

SDA algorithm

Listing 1: Finding orthonormal basis of supervised directions

INPUT:
* training set (xi,y1),...(xn, ¥n)
* algorithm, fitting w in linear classification
y = sign[{w, x) — threshold)|

ALGORITHM:
for d=1,2,..D:
wg - classifier_direction[(xi,y1),...(xn, yn)]
Wqg = o
[wall
for n=1,2,..N:
Xn = Xn — <Xn7 Wd>Wd

OUTPUT: Wi, Wa,...Wp.
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Principal component analysis

Reminder

Scalar product reminer

Here we will assume (a,b) = a’ b
lall = v/(a, a)

Signed projection of xonto a is equal to (x, a)/ | a||

Unsigned projection (length) of x onto a is equal to

[ a)l /[l
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Reminder

Useful properties

e For any matrix X € RMP XTX ¢ RPD is symmetric and
positive semi-definite:

N N
] {XTX}U = Zn:l XniXnj = Zn:l XnjXni = {XTX}J','
o VaeRP: (a,XTXa)=a"X"Xa=|Xa|* >0
@ General properties:

o if all eigenvalues are unique, eigenvectors are also unique (up
to scalar multipliers).
e if A= 0 then all its eigenvalues are non-negative
@ Since XX > 0 it follows that all its eigenvalues are
non-negative.
o We will assume that eigenvalues of XX are
AM>A>...>Ap>0.
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Reminder

Useful properties

For any x, b € RP it holds that:

o[bT x]
ox b
For any x € RP and symmetric B € RP*P it holds that:
T
J[x" Bx] 2B
Ox
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Definition

Best hyperplane fit

@ For point x and subspace L denote:

e p-the projection of x on L
e h-orthogonal complement

e x=p+h, (p,h) =0.

Proposition 1

For x, its projection p and orthogonal complement h

2 2 2
IxII™ = llpll” + [lAll-

@ Prove proposition 1.
@ For training set x1, x2, ...xy we and subspace L we can also
find:
e projections: p1, po,...pPN
e orthogonal complements: hy, ho,...hy.
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Definition

Best hyperplane fit

Best-fit k-dimensional subspace for a set of points x1, X2, ...xy Is a
subspace, spanned by k vectors vi, vy, ...vk, solving

N
Z | Anll> = min
o V1,V2,...Vi

| \,

Proposition 2

Vectors vy, va, ...V, solving

N
> lpal® = max
p— V1,V2,... Vi

also define best-fit k-dimensional subspace.

\

o Prove 2 using proposition 1.
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Definition

Definition of PCA

Definition 2

Principal components aj, ap, ...ax are vectors, forming orthonormal
basis in the subspace of best fit.

@ Properties:
o Not invariant to translation:

o Before applying PCA, it is recommended to center objects:
1
X < x — j where p = N;X"

e Not invariant to scaling:

@ scale features to have unit variance
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Definition

Example: line of best fit

@ In PCA sum of squared of perpendicular distances to line is
minimized.

0.8+
0.6+

0.4+

o What is the difference with least squares minimization in
regression?
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Definition

Best hyperplane fit

Subspace Ly or rank k best fits points x1, x2, ...xp.

26/57



Dimensionality reduction - Victor Kitov

Principal component analysis

Applications of PCA

© Principal component analysis

@ Applications of PCA

27/57



Dimensionality reduction - Victor Kitov

Principal component analysis

Applications of PCA

Visualization

original data space

PCA

PC2
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Principal component analysis
Applications of PCA

Data filtering

Remove noise to get a cleaner picture of data distribution:

a Horizontal View a Horizontal View

o83 o

B

o o

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop
on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October.
http://www.gensips.gatech.edu/proceedings/.
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Economic description of data

Faces database:
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Applications of PCA

Eigenfaces

Eigenvectors are called eigenfaces. Projections on first several
eigenfaces describe most of face variability.
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Applications of PCA

PCA vs. SDA

ionosphere: ionosphere:
8 PCA (0.999) 3 SDA (0.305)
L]
° L]
6 . 2 L
. . ) °
L] . o L] ° 1 . L]
4 c. v e® e
Ll
. e, 8o o |
2 Y
. D
o ofe . ° . - .- L -1 e @ @
.. e ® «
0 ° o *® .0. i’ . ° ee
O B % e
€, 'Y o . o 1
«o® ‘ ®
o o 8 .
=2 L1 ™ L] o0
e T ® o * ° -3 . °
'l ) L]
° s ° .
4l % . ‘e
,. . -4 }
L]
L]
-6 L L L L -5 L L L L
-6 -4 -2 0 2 4 6 8 -6 -5 -4 -3 -2 -1 0 1 2

32/57



Dimensionality reduction - Victor Kitov

Principal component analysis

Applications of PCA

PCA vs. SDA

banknote authentication: banknote authentication:
PCA (1.000) SDA (0.567)
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Applications of PCA

PCA vs. SDA

credit approval: credit approval:
PCA (0.815) SDA (0.265)
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Application details

Quality of approximation

Consider vector x. Since all D principal components form a full
othonormal basis, x can be written as

X = (X, al>31 + <X, 22>32 + ...+ <X, aD>aD

Let pX be the projection of x onto subspace spanned by first K
principal components:

pK = (x,a1)a1 + (x,a2)a2 + ... + (x, ak)ak

Error of this approximation is

AWK = x — pX = (x, ak11)ak41 + ... + (x,ap)ap
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Application details

Quality of approximation

Using that a;,...ap is an orthonormal set of vectors, we get

= (x,x) = (x,a1)%> + ... 4+ (x, ap)?
HpKH = (pX, pf) = (x,a1)% + ... + (x, ak)?

|40 = 1) = (xaici)? 4+ (202

We can measure how well first K components describe our dataset
X1, X2, ...Xy using relative loss

S Ig ]

L(K)==o-" "1
() Sonia Ixall®

or relative score
S(K) = Yo Hpn H
>net lIxall?
Evidently L(K) + S(K) = 1.
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Application details

Contribution of individual component

Contribution of ay for explaining x is (x, ax)?.
Contribution of aj for explaining x1, x2, ...xy is:

N

Z<Xﬂ7 ak>2

n=1
Explained variance ratio:
> on (Xn: 2)°
D N 2
>d=1 2n=1(Xn: ad)

Explained variance ratio measures relative contribution of
component a; to explaining our dataset xi, ...xpy.
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Application details

How many principal components to select?

o Data visualization: 2 or 3 components.

@ Take most significant components until their variance falls
sharply down:

L
2

@ Or take minimum K such that L(K) < t orS(K) >1—t,
where typically t = 0.95.
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Application details

Transformation £ 2 x

Dependence between original and transformed features:
E=AT(x—p), x=A¢ +p,

where = % ZnN:1 Xp-
Taking first r components - A, = [a1]az]...|a,], we get the image of
the reduced transformation:

&= AZ—(X — )

&, will correspond to
Xr:A< %r > +p=Ak +p

X = AA(x = p) + p
A,AT is projection matrix with rank r
(follows from the property rank [AAT] = rank [ATA] for any A).
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Application details

Local linear projection

a Horizontal View a Horizontal View

-1 -1 -1 -1
a Bird Eyes View a Bird Eyes View

X. Huo and Jihong Chen (2002). Local linear projection (LLP). First IEEE Workshop
on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, October.
http://www.gensips.gatech.edu/proceedings/.
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Application details

Local linear projection

Local linear projection method makes denoised version of original
data by locally projecting it onto hyperplane of small rank.

INPUT:
p-local dimensionality of data
K-number of nearest neighbours

for each x; in X:
1) find K nearest neighbours of x;j: Xji1),---Xj(i k)
2) find linear hyperplane L, of dimensionality p,
describing x;( 1), ---Xj(i k)
3) let % be the projection of x; onto this hyperplane

OUTPUT :
denoised version of objects %Xi,%,...Rk.

42/57



Dimensionality reduction - Victor Kitov

Principal component analysis

Construction of principal components

© Principal component analysis

@ Construction of principal components
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Principal component analysis

Construction of principal components

Constructive definition of PCA

@ Principal components ay, as,...ap € RP are found such that

1, i=j

0 i#j

@ Xa; is a vector of projections of all objects onto the i-th
principal component.

<ai>aj> =

@ For any object x its projections onto principal components are

equal to:
p= ATx = [<31,X>, "'<aDaX>]T

where A = [a;; a5; ...ap] € RPP,
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Principal component analysis

Construction of principal components

Constructive definition of PCA

O a; is selected to maximize || Xa || subject to (a1, a1) =1

@ a is selected to maximize || Xay|| subject to (az, ap) =1,
<32, al> =0

© a3 is selected to maximize || Xas|| subject to (a3, a3z) =1,
<33,31> = <337 32> =0

etc.
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Construction of principal components

Derivation: 1st component

| Xay||? = max,,
fa] =1

Lagrangian of optimization problem (1):

L(ar, ) = af X" Xay — p(af a1 — 1) — extra,

oL
— =2X"Xa; — 2pa; =0
8a1 a1 pan

so ay is selected from a set of eigenvectors of X7 X.
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Principal component analysis

Construction of principal components

Derivation: 1st component

Since
[ Xay||? = (Xa1)" Xay = af X" Xa; = AaJ a = A

a1 should be the eigenvector, corresponding to the largest
eigenvalue Aj.

Comment: If many many eigenvector directions corrsponding to A;
exist, select arbitrary eigenvector, satisfying constraint of (1).

47/57



Dimensionality reduction - Victor Kitov

Principal component analysis

Construction of principal components

Derivation: 2nd component

| Xaz||* — max,
]| =1 (2)
a2Tal =0

Lagrangian of optimization problem (2):

L(ap, p) = a;XTXaz — ,u(ag-az —-1)— aai’-az — extra, o

L
O XTXay — 2y — cvay = 0 (3)
5932
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Principal component analysis

Construction of principal components

Derivation: 2nd component

By multiplying by a/ we obtain:

oL
Ti
al 831

Since ay is selected to be orthogonal to ar:

= QalTXTXag — 2,ualTag — aalTal =0 (4)

2ual ap =0
Since alTXTXaz is scalar and a; is eigenvector of X7 X:
al X" Xay = (alTXTXaz> ! =aj X" Xa; = Maja; =0
It follows that (4) simplifies to avaf a1 = a = 0 and (3) becomes
X" Xay — par» =0

So ay is selected from a set of eigenvectors of X T X.
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Principal component analysis

Construction of principal components

Derivation: 2nd component

Since
[ Xaz||? = (Xaz) " Xap = a] X" Xay = AaJ ap = A

a> should be the eigenvector, corresponding to second largest
eigenvalue A;.

Comment: If many many eigenvector directions corrsponding to A
exist, select arbitrary eigenvector, satisfying constraints of (2).
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Principal component analysis

Construction of principal components

Derivation: k-th component

| Xax || — maxa,
lakll =1 (5)

T, — T —
agar=..=a ak-1=0

Lagrangian of optimization problem (5):

k—1
L(ak, ) = akTXTXak—,u(akTak—l)—Z ajal aj — extra, o ons
j=1
oL k—1
T
Dar = 2X" Xay — 2pag — jz_;ajaj =0 (6)
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Principal component analysis

Construction of principal components

Derivation: k-th component

By multiplying by a,-T forany i=1,2,...k — 1 we obtain:

T oL TyT T T T
a; = 23,- X Xak — 2,&3,- dk —a1d8; a1 — ... — Q18] dk—-1 = 0

(7)

Since a; and a; are selected to be orthogonal for i # j, we have:

é?al

2palak =0, «jalaj=0Vi#]

Since a,-TXTXag is scalar and a; is eigenvector of X7 X:
T
a,-TXTXag = (a,-TXTXak) = aZ—XTXa; = A;a[a,- =0

It follows that (7) simplifies to a,-a,-Ta,- = «a; = 0. Since / was
selected arbitrary from i =1,2, .. .k—1, a1 =ar = ... = a,_1 =0
and (6) becomes

X" Xap — pax =0

So ay is selected from a set of eigenvectors of X T X.
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Principal component analysis

Construction of principal components

Derivation: k-th component

Since
||Xak||2 = (Xak)TXak = a,Z—XTXak = )\a,z—ak =A

ak should be the eigenvector, corresponding to the k-th largest
eigenvalue Ay.

Comment: If many many eigenvector directions corrsponding to A
exist, select arbitrary eigenvector, satisfying constraints of (5).
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@ Proof of optimality of principal components
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Principal component analysis

Proof of optimality of principal components

Componentwise optimization leads to best fit subspace

Let Ly be the subspace spanned by a1, a, ...ax. Then for each k Ly
is the best-fit k-dimensional subspace for X.

Proof: use induction. For r =1 the statement is true by definition
since projection maximization is equivalent to distance
minimization.

Suppose theorem holds for r — 1. Let L, be the plane of best-fit of
dimension with dim L = r. We can always choose a orthonormal
basis of L, by, by, ...b, so that

[br]| =1
(8)
b,<l_a1,b,_l_ag,”.b,<l_ar_1

by setting b, perpendicular to projections of a1, as,...a,—1 on L,.
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Principal component analysis

Proof of optimality of principal components

Componentwise optimization leads to best fit subspace

Consider the sum of squared projections:
IXby|? + ([ Xb2|[* + ... + [[Xbr—1 |1 + (I Xbr||?

By induction proposition L[ai, ap, ...a,—1] is space of best fit of rank
r—1and L[by,...b,_1] is some space of same rank, so sum of
squared projections on it is smaller:

IXba ||+ ([ Xba [* 4.+ | Xbr—1|I* < [[ Xax||*+ ]| Xaz|* +..+ | Xar 1|

and
IXbe|* < || Xar ||

since b, by (8) satisfies constraints of optimization problem (77)
and a, is its optimal solution.
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Principal component analysis

Proof of optimality of principal components

Conclusion

For x € RP there exist D principal components.

Principal component a; is the i-th eigenvector of X7 X,
corresponding to i-th largest eigenvalue \;.

Sum of squared projections onto a; is || Xa;[|? = A;.

Explained variance ratio by component a; is equal to
Ai
D
Zd:l )\d
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