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 Metric schemes of classification based  on    source decisions          

     and using  in an ensemble of sources.
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age mutual information between an ensemble of sources and a set of  

    classes as a characteristic of efficiency of a classifier.

     

  •  Connection of a classification task with a problem of source

•  

 encoding in a  

      presence of a noisy channel between source and coder.

 

Dissimilarity measures in sets of objects of individual sources and in a set 

     of composite objects produced by the 

  
ensemble of the sources. 

     Class-conditional densities by these measures.

    

  •  Average mutual informations and their estimations for  MV и GM classifiers.

    

  •  Main result as a relation of estimations of average mutual information for  

     MV и GM classifiers  

 

  •  Experimental results on recognition of faces via color images given by triple

     component HSI model (ensemble of three sources)
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               Majority Voting (MV classifier)                   General Measure (GM classifier)

        3. Average mutual informations of the classifiers
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4. Connection  with source coding problem   
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5. Dissimirarity measures of objects 
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Collections of template objects in classes (basic objects) :

where  is 

                  6. Class-conditional densities       
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where are the weights of the template objects.

Class-conditional densities given by  -tuple mixtures for the ensemble :
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    A priori probability distribution in the set of classes  :
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        7. Functional of the average mutual information
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8. The average mutual information for the classifiers
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   9. Estimations for the functionals of the mutual information
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 Estimations of the average mutual information over the ensemble of sources

 For MV classifier:           
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11. Experimental results of face recognition                     

                                via colour HSI images

              

Error rates and standard deviations

   
                                                                                                         

                                                                                    

Dataset :

        sources H,S,I; 1000 objects 
                                                                                            for  each  source;

 
                                                                                            25 classes, 40 images per class 
                                                                                            for each source.
                                                                       

                                                                                               

                                  

Scheme of experiment :

                                                                                                        

                                                          200 times, 2 fold cross-validation    

                                                
                                                                                                         
                

Discriminant functions given by
       

                                                                                                           NN -  
                                                                

nearest neighbor
                            

                    
                                                                                                           MT -  

                   

mixture of templates

                                                                                     SVM  -   
                                                                                    

support vector machine
 

   

 

 

sources           error rate 

ensemble       deviation 
NN  MT  SVM  

face: H 
  0.015 0.008 0.006 

  0.005 0.006 0.003 

face: S 
  0.017 0.012 0.009 

  0.006 0.003 0.004 

face:  I 
  0.022 0.012 0.017 

  0.006 0.005 0.006 

  face: HSI 

 (GM) 

  0.007 0.002 0.001 

  0.005 0.002 0.001 

  face: HSI 

 (MV) 

  0.010 0.005 0.005 

  0.005 0.003 0.005 



                                                  

       For metric classification schemes in a given ensemble of sources, a comparative 

         criteria of their

                   12. Final remarks
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 efficiency in terms of average mutual information between the 

         ensemble and a set of classes is suggested.

      Two schemes are investigated, namely the first is based on majority voting   
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          decisions over individual sources  and the second one combines the sources 

          using a  g

In the

eneral measure

 frame of thes

 (GM) in t

e schemes,

he ensemble. 

 the functiona

        

ls of the  

          of the MV and GM classifiers are defined and their es

average mutual information 

It is shown that the maximal average mut

timations are o

ual information

btai

 of 

ned.

th

 

 

Me  
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does not exceed the  GM classifier subject to 

          the same collections of the source 

average mutual
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 information of the 
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 of  erson faces given by color HSI images that yield an ensemble of 

          three sources, experiments on face recognition were performed. For different

          discriminant functions, the results show

  

 

n the less error rates of the GM classifier 

          with respect to the error rates of the MV classifier.  


