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Variational Inequality

Find z* € K such that
g(z) — g (&%) + (F (z*),z — z*) > 0, for all z € R?

b K C R? is a convex set
» g:RY = RU {400} is a proper convex
lower semi-continuous function

» F: K — R? is monotone operator,
ie. (F(x)— F(y),x—y)>0forall z,y € K



Stochastic Variational Inequality

Find ™ € K such that
g(z) — g (&%) + (F (z*),z — 2*) > 0, for all z € R?

» £ is a random variable

» ['(x;€) is monotone almost surely



Examples: Stochastic Convex Minimization

min E¢ | f(z; )]

reX

pX C R% is a convex set

pf(x;&) : X = R is almost surely convex function

F(x;8) = V f(;6)



Examples: Stochastic Saddle Point Problem

. . |
min max Felf(z, y; )]

pX C R% Y c R% are convex sets
>f(x,y;&) : X x Y — R is convex in z and concave in y

almost surely

Ve f(z,y;€)

i —Vyf(a:',y,f) il




Extragradient Algorithm

Algorithm 1 Extragradient Method for Variational Inequalities.

1: Parameters: x° € K, stepsize n > 0
2: for t =0,1,2,... do

3:  y' =prox,, (x* —nF(x"))

4 x"*t = prox,, (x* —nF(y"))

5: end for




Stochastic Extragradient Algorithm

Algorithm 1 Extragradient Method for Variational Inequalities.

1: Parameters: x° € K, stepsize n > 0

2: for t =0,1,2,... do

3: yt = prox,, (x! — nF(x")) ——— F(z";{))
4: x"t = prox,, (x* —nF(y")) e=—— F(y'; &)
5: end for

Samples & and €5 are the same or independent?
1 2



Independent Samples: Judistsky et al., 2011

» Converges under very restrictive
uniformly bounded noise assumption

» Diverges even on bilinear
stochastic saddle point problems



Same Sample: Our Approach

Algorithm 2 Stochastic Extragradient Method for Variational Inequalities.

1: Parameters: x° € K, stepsize n > 0
2: fort=20,1,2,... do

3 Sample &°

4: y" =prox,, (x* —nF(x%¢"))

5. x'T = prox,g (x* —nF(y5¢"))
6: end for

Requires the noise to be bounded
at the optimum only!



Experiments: Bilinear Saddle Point Problem
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Figure 1: Left: comparison of using independent samples and averaging as suggested by [Ju-
ditsky et al., 2011] and the same sample as proposed in this work. The problem here is the
sum of randomly sampled matrices min, max, Y ., z'B;y. Since at point (z*,y*) the noise is
equal 0, the convergence of Algorithm E is linear unlike the slow rates of |[Juditsky et al., 2011|
and |Gidel et al., 2019al. "EGm’ is the version with negative momentum |[Gidel et al., 2019b]
equal 8 = —0.3. Right: bilinear example with linear terms.



Experiments: Generating Mixture of
Gaussians
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Figure 2: Top line: extragradient with the same sample. Middle line: gradient descent-ascent.
Bottom line: extragradient with different samples. Since the same seed was used for all methods,
the former two methods performed extremely similarly, although when zooming it should be
clear that their results are slightly different.
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Figure 9: Adam (top) and ExtraAdam (bottom) results of training self attention GAN for two
epochs. The results of training with the three best performing stepsizes, 1073,2-1073,4 - 1073,

are provided for each method (from the left to the right). Best seen in color by zooming on a
computer screen.



