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Kuhn-Takker conditions

Consider the optimization task:

{f(x) — miny

1
gi(x) <0 i=12,..m M

Theorem (necessary conditions for optimality):

Let
@ x* - be the solution to (1),
o f(x*) and g;(x*), i = 1,2,...m - continuously differentiable at x*.
@ one of the conditions of regularity is satisfied

Then coefficients Ay, Ay, ...\, exist, such that x* satisfies the
conditions:

V(x*)+ 37 AiVgi(x*) =0 stationarity

gi(x*) <0 feasibility 2
A>0 non-negativity
Xigi(x*) =0 complementary slackness
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Kuhn-Takker conditions

Possible regularity conditions:
e {Vgj(x*), j €/} - linearly independent, where J are indexes
of active constraints J = {j : g;(x*) = 0}.
@ Slater condition: Jx : g;(x) < 0V/ (applicable only when
f(x) and g;(x), i = 1,2,...m are convex)

Sufficient conditions of optimality:

If f(x) and g;(x), i =1,2,...m are convex, Kuhn-Takker
conditions (2) and Slater conditions become sufficient for x* to be
the solution of (1).
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Convex optimization

Why convexity of f(x) and g;(x), i = 1,2,...m is convenient:
@ All local minimums become global minimums
@ The set of minimums is convex

e If f(x) is strictly convex and minimum exists, then it is
unique.
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Main idea
Select hyperplane maximizing the spread between classes.

8/24




SVM - Victor Kitov

Support vector machines

Linearly separable case

Support vector machines

Objects x; for i = 1,2, ...n lie at distance b/|w| from discriminant
hyperplane if

{xirw—i—woZb, yi=+1 5 N

x,-Tw—i— wp < —b y=-1
This can be rewritten as
yi(xIw+wo) >b, i=12.N.

The margin is equal to 2b/|w|. Since w, wqy and b are defined up
to multiplication constant, we can set b = 1.
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Problem statement

Problem statement:

Iww — min
w,wo

yi(xIw+wo) >1, i=12..N.
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Problem statement

Problem statement:

Iww — min
w,wo

yi(xIw+wo) >1, i=12..N.

Lagrangian:
1 N

Lp=w'w=Y ai(yi(w x+wo)—1) = extr, «;>0,i=12,.N.
2 1 w,wp,x

By Karush-Kuhn-Takker the solution satisfies constraints:

Q; Z 07
y,-(x,-Tw—i- wo) —1>0,
aj(yi(x]w+ wg) — 1) = 0.
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Support vectors

non-informative observations: y;(x/w + wg) > 1
@ do not affect the solution

support vectors: y;(x,.Tw +wp) =1
@ lie at distance 1/|w/| to separating hyperplane
@ affect the the solution.

o
Hycwle +wy = +1
<

o
<

©
w

origin i b g=>0
g < 0~ hyperplane, g(z) = w"x +wy =0
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Dual problem

8w0 =0: Za,y, =0

oL
87:0: W:'Z(Jz,"t/,‘.llf:,~

Substituting into Lagrangian Lp, we get:

Lp = Za, 5 ZZa,ajy,ij xj — max

i=1 j=1
«; can be found from the dual optimization problem:

N 1 N N T
Doimt O = g Dim Dojeg CGOGYiYX; Xj — MaXq
. N
o >0,i=1,2 ..m 2/2?1 aiyi =0
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Linearly separable case

Solution

Denote SV - the set of indexes of support vectors.
Optimal «; determine weights directly:

W= oy
ieSy

wp can be found from any edge equality for support vectors:

yi(x]w+wo) =1,ie SV

Solution from summation over ngy equation provides a more
robust estimate of wy:

nsywo + Z x[w= Z Yi

ieSy ieSy
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Linearly non-separable case

%WTW — min
w,wo

y,-(x,-Tw+ wo)>1, i=12,..N.
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Linearly non-separable case

%WTW — min
w,wo

y,-(x,-Tw+ wo)>1, i=12,..N.

Problem
Constraints become incompatible and give empty set!
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Linearly non-separable case

No separating hyperplane exists. Errors are permitted by
including slack variables &;:

IWw+ SN & — minge
yiwlxi+wo) >1-&,i=1,2,..N
>0 =12 N

@ Parameter C is the cost for
misclassification and controls the
bias-variance trade-off.

@ It is chosen on validation set.

@ Other penalties are possible, e.g.

Ccy, ¢
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Linearly non-separable case

Lagrangian:
1 N N
Lp= 2WTW+CZ&—; Oéi(yi(WTx/+Wo)—1+§i)—; rii — extr

By Karush-Kuhn-Takker the solution satisfies constraints:

§>0,0,>0,r;>0
yi(x]w+wo) > 1-¢;,
ai(yi(w'xi +wp) —14&) =0
ri& =0
OLp
o%;

=0:C—-a;j—ri=0 = Oé,'E[O,C].
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Classification of training objects

@ Non-informative objects:
o yi(wlx; +wp) > 1
@ Support vectors SV:
o yi(w'xi+wp) <1 -
o boundary support vectors SV:
o yi(w'xi4+wp) =1
o violating support vectors:

o yi(w'x; 4+ wy)] > 0: violating support vector is correctly
classified.
° y/(wrx/ + wp)] < 0: violating support vector is misclassified.
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Linearly non-separable case - dual problem

N
OLp S aiy =
87‘/\/0—0 i:1()[,yl—0

N
oL
P =0: w= Za,—y,—x,—
i=1

ow
oLp
=0:C—q;—ri=0
a{, 1 1
Substituting these constraints into Lp, we obtain the dual

problem:

N 1N N T
Lp=3"ilq 0 — 3 Ding D ojmy QGiQGYiY;2; Xj — MaXq
N
Zi:1 ajy; =0
0 S Q; S C
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Solution

Denote SV - the set of indexes of support vectors with a; > 0
(= y(wlx; + wy) = 1—¢&) and SV - the set of indexes of
support vectors with a; € (0,C) (< & =0, y(w'x; + wp) = 1)
Optimal «; determine weights directly:
W= Z QiYix;
i€SY

wy can be found from any edge equality for support vectors,
having & = 0: .

yi(x]w+wp) =1,ie SV
Solution from summation of equations for each / € SV provides a
more robust estimate of wy:

.
ieSY €Sy
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Another view on SVM

Optimization problem:

IWw+ SN & — minge
yilw x; + wo) = Mi(w, wp) > 1§,
>0 i=12 N

can be rewritten as'

2
wl + 1—Mi(w,w — min
e 2 | o)l — mi

Thus SVM is linear discriminant function with cost approximated
with L(M) = [1 — M] and L, regularization.

'what cost function will correspond for ZHN:1 £2 penalty?
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Properties

Solution:
y = sign { > iy < xj x> +WO}
ieSy
Sparsity of SVM: solution depends only on support vectors:
@ more affected by outliers
Possible filtering scheme (like editing):
@ solve
@ remove lowest margin objects
© solve on refined sample
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Multiclass classification

C classes w1, wy, ...wc.
@ One-against-all:

e build C binary classifiers, classifying class w; against other

classes
o select the class with highest margin

@ One-against-one:

o build C(C-1)/2 classifiers, classifying class w; against w;.
o select the class having maximum votes

@ Multiclass variant of initial algorithm
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Multiclass SVM

C discriminant functions are built simultaneously:
gi(x) = (W) x + wg
Linearly separable case:

Zfﬂ(wk)rwk — miny,
(W Tx 4 wdD — (Wk) T — wh > 1k £ y(i), i =1,2,..N

Linearly non-separable case:

S (W) Twk 4+ C S & — miny,
(W T + w0 — (k)T — wh > 1 — &Yk £ y(i), i =1,2,..N
& >0
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