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Optimization reminder

Kuhn-Takker conditions

Consider the optimization task:{
f(x)→ minx

gi(x) ≤ 0 i = 1, 2, ...m
(1)

Theorem (necessary conditions for optimality):
Let

x∗ - be the solution to (1),

f(x∗) and gi(x
∗), i = 1, 2, ...m - continuously differentiable at x∗.

one of the conditions of regularity is satisfied

Then coefficients λ1, λ2, ...λm exist, such that x∗ satisfies the

conditions:
∇f(x∗) +

∑m
i=1 λi∇gi(x

∗) = 0 stationarity

gi(x
∗) ≤ 0 feasibility

λi ≥ 0 non-negativity

λigi(x
∗) = 0 complementary slackness

(2)
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Optimization reminder

Kuhn-Takker conditions

Possible regularity conditions:

{∇gj(x
∗), j ∈ J} - linearly independent, where J are indexes

of active constraints J = {j : gj(x
∗) = 0}.

Slater condition: ∃x : gi(x) < 0∀i (applicable only when

f(x) and gi(x), i = 1, 2, ...m are convex)

Sufficient conditions of optimality:
If f(x) and gi(x), i = 1, 2, ...m are convex, Kuhn-Takker

conditions (2) and Slater conditions become sufficient for x∗ to be

the solution of (1).
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Optimization reminder

Convex optimization

Why convexity of f(x) and gi(x), i = 1, 2, ...m is convenient:

All local minimums become global minimums

The set of minimums is convex

If f(x) is strictly convex and minimum exists, then it is

unique.
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Support vector machines

Main idea

Select hyperplane maximizing the spread between classes.
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Support vector machines

Objects xi for i = 1, 2, ...n lie at distance b/|w| from discriminant

hyperplane if{
xT

i w + w0 ≥ b, yi = +1

xT
i w + w0 ≤ −b yi = −1

i = 1, 2, ...N.

This can be rewritten as

yi(x
T
i w + w0) ≥ b, i = 1, 2, ...N.

The margin is equal to 2b/|w|. Since w,w0 and b are defined up

to multiplication constant, we can set b = 1.
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Linearly separable case

Problem statement

Problem statement:
1
2
wTw → min

w,w0

yi(x
T
i w + w0) ≥ 1, i = 1, 2, ...N.

Lagrangian:

LP =
1

2
wTw−

N∑
i=1

αi(yi(w
Tx+w0)−1)→ extr

w,w0,α
, αi ≥ 0, i = 1, 2, ...N.

By Karush-Kuhn-Takker the solution satisfies constraints:
αi ≥ 0,

yi(x
T
i w + w0)− 1 ≥ 0,

αi(yi(x
T
i w + w0)− 1) = 0.
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Linearly separable case

Support vectors

non-informative observations: yi(x
T
i w + w0) > 1

do not affect the solution

support vectors: yi(x
T
i w + w0) = 1

lie at distance 1/|w| to separating hyperplane

affect the the solution.
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Dual problem

∂L

∂w0

= 0 :
N∑

i=1

αiyi = 0

∂L

∂w
= 0 : w =

N∑
i=1

αiyixi

Substituting into Lagrangian LP, we get:

LD =
N∑

i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj → max

α

αi can be found from the dual optimization problem:{∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjyiyjx

T
i xj → maxα

αi ≥ 0, i = 1, 2, ...n;
∑N

i=1 αiyi = 0
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Solution

Denote SV - the set of indexes of support vectors.

Optimal αi determine weights directly:

w =
∑
i∈SV

αiyixi

w0 can be found from any edge equality for support vectors:

yi(x
T
i w + w0) = 1, i ∈ SV

Solution from summation over nSV equation provides a more

robust estimate of w0:

nSVw0 +
∑
i∈SV

xT
i w =

∑
i∈SV

yi
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Linearly non-separable case


1
2
wTw → min

w,w0

yi(x
T
i w + w0) ≥ 1, i = 1, 2, ...N.

Problem

Constraints become incompatible and give empty set!
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Linearly non-separable case

No separating hyperplane exists. Errors are permitted by

including slack variables ξi:
1
2
wTw + C

∑N
i=1 ξi → minw,ξ

yi(w
Txi + w0) ≥ 1− ξi , i = 1, 2, ...N

ξi ≥ 0, i = 1, 2, ...N

Parameter C is the cost for

misclassification and controls the

bias-variance trade-off.

It is chosen on validation set.

Other penalties are possible, e.g.

C
∑

i ξ
2
i .
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Linearly non-separable case

Lagrangian:

LP =
1

2
wTw+C

∑
i

ξi−
N∑

i=1

αi(yi(w
Txi+w0)−1+ξi)−

N∑
i=1

riξi → extr

By Karush-Kuhn-Takker the solution satisfies constraints:
ξi ≥ 0, αi ≥ 0, ri ≥ 0

yi(x
T
i w + w0) ≥ 1− ξi ,

αi(yi(w
Txi + w0)− 1 + ξi) = 0

riξi = 0

∂LP

∂ξi
= 0 : C − αi − ri = 0 ⇒ αi ∈ [0,C].
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Linearly non-separable case

Classification of training objects

Non-informative objects:

yi(w
Txi + w0) > 1

Support vectors SV:

yi(w
Txi + w0) ≤ 1

boundary support vectors S̃V:

yi(w
Txi + w0) = 1

violating support vectors:

yi(w
Txi + w0)] > 0: violating support vector is correctly

classified.

yi(w
Txi + w0)] < 0: violating support vector is misclassified.
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Linearly non-separable case - dual problem

∂LP

∂w0

= 0 :
N∑

i=1

αiyi = 0

∂LP

∂w
= 0 : w =

N∑
i=1

αiyixi

∂LP

∂ξi
= 0 : C − αi − ri = 0

Substituting these constraints into LP, we obtain the dual

problem:
LD =

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjyiyjx

T
i xj → maxα∑N

i=1 αiyi = 0

0 ≤ αi ≤ C
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Linearly non-separable case

Solution

Denote SV - the set of indexes of support vectors with αi > 0

(⇔ y(wTxi + w0) = 1− ξi) and S̃V - the set of indexes of

support vectors with αi ∈ (0,C) (⇔ ξi = 0, y(wTxi + w0) = 1)

Optimal αi determine weights directly:

w =
∑
i∈SV

αiyixi

w0 can be found from any edge equality for support vectors,

having ξi = 0:

yi(x
T
i w + w0) = 1, i ∈ S̃V

Solution from summation of equations for each i ∈ S̃V provides a

more robust estimate of w0:

nS̃Vw0 +
∑
i∈S̃V

xT
i w =

∑
i∈S̃V

yi
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Another view on SVM

Optimization problem:
1
2
wTw + C

∑N
i=1 ξi → minw,ξ

yi(w
Txi + w0) = Mi(w,w0) ≥ 1− ξi ,

ξi ≥ 0, i = 1, 2, ...N

can be rewritten as1

1

2C
|w|2 +

N∑
i=1

[1−Mi(w,w0)]+ → min
w,ξ

Thus SVM is linear discriminant function with cost approximated

with L(M) = [1−M]+ and L2 regularization.

1what cost function will correspond for
∑N

n=1
ξ2
n penalty?
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Properties

Solution:

y = sign

{∑
i∈SV

αiyi < xi ,x > +w0

}
Sparsity of SVM: solution depends only on support vectors:

more affected by outliers

Possible filtering scheme (like editing):

1 solve

2 remove lowest margin objects

3 solve on refined sample
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Multiclass classification

C classes ω1, ω2, ...ωC.

One-against-all:

build C binary classifiers, classifying class ωi against other

classes

select the class with highest margin

One-against-one:

build C(C-1)/2 classifiers, classifying class ωi against ωj.

select the class having maximum votes

Multiclass variant of initial algorithm
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Multiclass SVM

C discriminant functions are built simultaneously:

gk(x) = (wk)Tx + wk
0

Linearly separable case:{∑C
k=1(w

k)Twk → minw

(wy(i))Tx + w
y(i)
0
− (wk)Tx− wk

0
≥ 1∀k 6= y(i), i = 1, 2, ...N

Linearly non-separable case:
∑C

k=1(w
k)Twk + C

∑N
i=1 ξi → minw

(wy(i))Tx + w
y(i)
0
− (wk)Tx− wk

0
≥ 1− ξi ∀k 6= y(i), i = 1, 2, ...N

ξi ≥ 0
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