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Ensemble learning

De�nition 1

Ensemble learning - using multiple machine learning methods for a
given problem and integrating their output to obtain �nal result.

Synonyms: committee-based learning, multiple classi�er systems.

Applications:

supervised methods: regression, classi�cation

unsupervised methods: clustering
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Ensembles use cases

solving C class classi�cation with many binary classi�ers
under�tting, high model bias

existing model hypothesis space is too narrow to explain the
true one
di�erent oversimpli�ed models have bias in di�erent directions,
mutually compensating each other.

over�tting, high model variance
avoid local optima of optimization methods
too small dataset to �gure out concretely the exact model
hypothesis

when task itself promotes usage of ensembles with features of
di�erent nature

E.g. computer security:
multiple sources of diverse information (password, face
detection, �ngerprint)
di�erent abstraction levels need to be united (current action,
behavior pattern during day, week, month)
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Multiclass classi�cation with binary classi�ers
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Multiclass classi�cation with binary classi�ers

Multiclass classi�cation with binary classi�ers

Solved problem: make C -class classi�cation using many binary
classi�ers.

Approaches:
one-versus-all

for each c = 1, 2, ...C train binary classi�er on all objects and
output I[yn = c],
assign class, getting the highest score in resulting C classi�ers.

one-versus-one

for each i , j ∈ [1, 2, ...C ], i 6= j learn on objects with
yn ∈ {i , j} with output yn
assign class, getting the highest score in resulting C(C − 1)/2
classi�ers.

error correcting codes
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Multiclass classi�cation with binary classi�ers

Error correcting codes

Used in classi�cation
Each class ωi is coded as a binary codeword Wi consisting of B bits:

ωi →W i

Minimum su�cient amount of bits to code C classes is dlog2 Ce
Given x , B binary classi�ers predict each bit of the class codeword.
Class is predicted as

ĉ(x) = argmin
c

∑
b=1

|Wcb − p̂b(x)|

where Wcb is the b-th bit of codeword, corresponding to class c .
More bits are used to make classi�cation more robust to errors of
individual binary classi�ers.
Codewords are selected to have maximum mutual Hamming distance
or randomly.
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Accuracy improvement demos

Table of Contents

1 Multiclass classi�cation with binary classi�ers

2 Accuracy improvement demos
Accuracy improvement for classi�cation
Accuracy improvement for regression

3 Fixed integration schemes for classi�cation

4 Stacking

5 Sampling ensemble methods

7/28



Ensemble learning - Victor Kitov

Accuracy improvement demos

Accuracy improvement for classi�cation

2 Accuracy improvement demos
Accuracy improvement for classi�cation
Accuracy improvement for regression

8/28



Ensemble learning - Victor Kitov

Accuracy improvement demos

Accuracy improvement for classi�cation

Classi�cation: original model space too narrow

Dataset
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Accuracy improvement demos

Accuracy improvement for classi�cation

Classi�cation: original model space too narrow

Classi�er 1
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Accuracy improvement demos

Accuracy improvement for classi�cation

Classi�cation: original model space too narrow

Classi�er 2
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Accuracy improvement demos

Accuracy improvement for classi�cation

Classi�cation: original model space too narrow

Classi�er 1 and classi�er 2 combined using AND rule
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Accuracy improvement demos

Accuracy improvement for regression
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Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Dataset
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Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Regression 1
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Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Regression 2
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Accuracy improvement demos

Accuracy improvement for regression

Regression: high variance

Regression 1 and regression 2 combined using averaging
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Fixed integration schemes for classi�cation
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Fixed integration schemes for classi�cation

Fixed combiner at class level

Output of base learner k

Exact class: ω1 or ω2.

Combiner predicts ω1 if:

all classi�ers predict ω1 (AND rule)

at least one classi�er predicts ω1 (OR rule)

at least k classi�ers predict ω1 (k-out-of-N)

majority of classi�ers predict ω1 (majority vote)

Each classi�er may be assigned a weight, based on its performance:

weighted majority vote

weighted k-out-of-N (based on score sum)
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Fixed integration schemes for classi�cation

Fixed combiner - ranking level

Output of base learner k

Ranking of classes:
ωk1 � ωk2 � . . . � ωkC

Ranking is equivalent to scoring of each class (with incomparable scoring
between classi�ers).

De�nition 2

Let Bk(i) be the count of classes scored below ωi by classi�er k . Borda
count B(i) of class ωi is the total number of classes scored below ωi by
all classi�ers:

B(i) =
K∑

k=1

Bk(i)

Combiner predicts ωi where i = argmaxi B(i)
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Fixed integration schemes for classi�cation

Fixed combiner at class probability level

Output of base learner k

Vectors of class probabilities:

[pk(ω1), p
k(ω2), . . . p

k(ωC )]

Combiner predicts ωi if i = argmaxi F (p
1(ωi ), p

2(ωi ), . . . p
K (ωi ))

F = mean or median.
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Stacking
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Stacking

Weighted averaging

Consider regression with K predictor models fk(x), k = 1, 2, ...K .
(Alternatively we may consider K discriminant functions in
classi�cation)

Weighted averaging combiner

f (x) =
K∑

k=1

wk fk(x)

Naive �tting

ŵ = argmin
w

N∑
i=1

L(yi ,
K∑

k=1

wk fk(xi ))

will over�t. The mostly over�tted method will get the most weight.
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Stacking

Linear stacking

Let training set {(xi , yi ), i = 1, 2, ...N} be split into M folds.

Denote fold(i) to be the fold, containing observation i

Denote f
−fold(i)
k be predictor k trained on all folds, except

fold(i).

De�nition

Linear stacking is weighted averaging combiner, where weights are
found using

ŵ = argmin
w

N∑
i=1

L(yi ,
K∑

k=1

wk f
−fold(i)
k (xi ))

For decreased over�tting we may add constraints{wk ≥ 0}Kk=1

or regularizer
∑K

k=1

(
wk − 1

K

)2
.
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Stacking

General stacking

De�nition

Generalized stacking is prediction

f (x) = Aθ (f1(x), f2(x), . . . fK (x)) ,

where A is some general form predictor and θ is a vector of parameters,
estimated by

θ̂ = argmin
θ

N∑
i=1

L
(
yi , Aθ

(
f
−fold(i)
1

(x), f
−fold(i)
2

(x), . . . f
−fold(i)
K (x)

))

Stacking is the most general approach
It is a winning strategy in most ML competitions.
fi (x) may be:

class number (coded using one-hot encoding).
vector of class probabilities
any initial or generated feature
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Sampling ensemble methods
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Sampling ensemble methods
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Sampling ensemble methods

Bias-variance decomposition

Bias-variance decomposition

Theorem 3 (Bias-variance decomposition)

Unknown relationship y = f (x) + ε is reconstructed using a set of

points (xn, yn), n = 1, 2...N as f̂ (x). Noise ε is independent of any x ,
Eε = 0 and Var [ε] = σ2. Then

EX ,Y [f̂ (x)− f (x)]2 = [EX ,Y f̂ (x)− f (x)]2 + EX ,Y [f̂ (x)− Ef̂ (x)]2

EX ,Y .ε[f̂ − y ]2 = [EX ,Y f̂ (x)− f (x)]2 + EX ,Y [f̂ (x)− Ef̂ (x)]2 + σ2

Comments:

Intuition: MSE = bias2 + variance+ irreducible error
Dartz visualization of models with high bias/variance
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Sampling ensemble methods

Bias-variance decomposition

Proof of bias-variance decomposition (3)

For simplicity of notation de�ne f := f (x), f̂ := f (x), E{·} := EX ,Y ,ε{·}

E
(
f̂ − f

)2
= E

(
f̂ − Ef̂ + Ef̂ − f

)2
= E

(
f̂ − Ef̂

)2
+
(
Ef̂ − f

)2
+ 2E

[
(f̂ − Ef̂ )(Ef̂ − f )

]
= E

(
f̂ − Ef̂

)2
+
(
Ef̂ − f

)2
We used that (Ef̂ − f ) is a constant number and hence

E
[
(f̂ − Ef̂ )(Ef̂ − f )

]
= (Ef̂ − f )E(f̂ − Ef̂ ) = 0.

E
(
f̂ − y

)2
= E

(
f̂ − f − ε

)2
= E

(
f̂ − f

)2
+ Eε2 − 2E

[
(f̂ − f )ε

]
= E

(
f̂ − Ef̂

)2
+
(
Ef̂ − f

)2
+ σ2

We used that E
[
(f̂ − f )ε

]
= E

[
(f̂ − f )

]
Eε = 0 since ε is independent

of X ,Y .
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Sampling ensemble methods
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Sampling ensemble methods

Bagging and random forest

Bagging& random subspaces

Bagging

random selection of samples (with replacement)12

e�cient for methods with high variance w.r.t. X ,Y .

Random subspace method:

random selection of features (without replacement)

We can apply both methods jointly

Also we may sample di�erent

1what is the probability that observation will not belong to bootstrap

sample?
2what is the limit of this probability with N →∞?
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Sampling ensemble methods

Bagging and random forest

Random forests

Input: training dataset TDS = {(xi , yi ), 1 = 1, 2, ...N}; the
number of trees B and the size of feature subsets m.
for b = 1, 2, ...B :

1 generate random training dataset TDSb of size N by sampling
(xi , yi ) pairs from TDS with replacement.

2 build a tree using TDSb training dataset with feature selection
for each node from random subset of features of size m
(generated individually for each node).

Output: B trees. Classi�cation is done using majority vote and
regression using averaging of B outputs.
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Sampling ensemble methods

Bagging and random forest

Comments

Random forests use random selection on both samples and
features

Step 1) is optional.

Left out samples may be used for evaluation of model
performance.

Out-of-bag prediction: assign output to xi , i = 1, 2, ...N using
majority vote (classi�cation) or averaging (regression) among
trees with b ∈ {b : (xi , yi ) /∈ T b}
Out-of-bag quality - lower bound for true model quality.3

Less interpretable than individual trees

+: Parallel implementation

-: di�erent trees are not targeted to correct mistakes of each
other

3why lower bound?
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Sampling ensemble methods

Bagging and random forest

Comments

Extra-Random trees-random sampling of (feature,value) pairs

more bias and less variance for each tree
faster training of each tree

RandomForest and ExtraRandomTrees do not over�t with
increasing B

Each tree should have high depth

otherwise averaging over oversimpli�ed trees will also give
oversimpli�ed model!
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