
Kernel methods - Victor Kitov

Kernel methods

Victor Kitov

v.v.kitov@yandex.ru

1/47

v.v.kitov@yandex.ru

Kernel methods - Victor Kitov

Kernel trick

Perform feature transformation: x→ φ(x). Scalar product

becomes 〈x,x′〉 → 〈φ(x), φ(x′)〉 = K(x,x′)

Kernel trick

Define not the feature representation x but only scalar product

function K(x,x′)

Comments:

required that the solution depends only on scalar

products.Kernels can be constructed from other kernels, for

example from:

1 scalar product 〈x,x′〉
2 constant K(x,x′) ≡ 1

3 xTAx for any A < 01

feature representation φ(x) not needed

〈x,x′〉 has complexity O(D). Complexity of K(x,x′) may be

O(1).
we can define natural linear kernel:

K(x,x′) = 〈x,x′〉 =
D∑

d=1

xdx
′
d

1Under what feature transformation will case 1 transform to cases 2 and 3?

2/47

Kernel methods - Victor Kitov

Kernelizable algorithms

ridge regression:

K-NN

K-means

PCA

SVM

many more...

3/47

Kernel methods - Victor Kitov

Kernel trick use cases

high-dimensional data

polynomial of order up to M

Gaussian kernel K(x,x′) = e
− 1

2σ2 ‖x−x
′‖2

corresponds to

infinite-dimensional feature space.

hard to vectorize data

strings, sets, images, texts, graphs, 3D-structures,

sequences, etc.

natural scalar product exist

strings: number of co-occuring substrings

sets: size of intersection of sets

example: for sets S1 and S2: K(S1,S2) = 2|S1∩S2| is a possible

kernel.

etc.

scalar product can be computed efficiently

4/47

Kernel methods - Victor Kitov

General motivation for kernel trick

perform generalization of linear methods to non-linear case

as efficient as linear methods

local minimum is global minimum

no local optima=>less overfitting

non-vectorial objects

hard to obtain vector representation

5/47

Kernel methods - Victor Kitov

Kernel definition

x is replaced with φ(x)

Example: [x]→ [x, x2, x3]

Kernel

Function K(x,x′) : X × X → R is a kernel function if it may be

represented as K(x,x′) = 〈φ(x), φ(x′)〉 for some mapping

φ : X → H, with scalar product defined on H.

〈x,x′〉 is replaced by 〈φ(x), φ(x′)〉 = K(x,x′)

6/47

Kernel methods - Victor Kitov

Illustration

7/47

Kernel methods - Victor Kitov

Specific types of kernels

K(x,x′) = K(x− x′) - stationary kernels (invariant to

translations)

K(x,x′) = K(‖x− x′‖) - radial basis functions

8/47

Kernel methods - Victor Kitov

Polynomial kernel2

Example 1: let D = 2.

K(x, z) = (xTz)2 = (x1z1 + x2z2)
2 =

= x2
1z

2
1 + x2

2z
2
2 + 2x1z1x2z2

= φT(x)φ(z)

for φ(x) = (x2
1 ,x

2
2
,
√

2x1x2)

2What kind of feature transformation will correspond to K(x, z) = (xTz)M

for arbitrary M and D?
9/47

Kernel methods - Victor Kitov

Polynomial kernel3

Example 2: let D = 2.

K(x, z) = (1 + xTz)2 = (1 + x1z1 + x2z2)
2 =

= 1 + x2
1z

2
1 + x2

2z
2
2 + 2x1z1 + 2x2z2 + 2x1z1x2z2

= φT(x)φ(z)

for φ(x) = (1, x2
1 , x2

2
,
√

2x1,
√

2x2,
√

2x1x2)

3What kind of feature transformation will correspond to

K(x, z) = (1 + xTz)M kernels for arbitrary M and D?
10/47

Kernel methods - Victor Kitov

Kernel properties

Theorem (Mercer): Function K(x,x′) is a kernel is and only if

it is symmetric: K(x,x′) = K(x′,x)

it is non-negative definite:

definition 1: for every function g : X → R
ˆ

X

ˆ
X

K(x,x′)g(x)g(x′)dxdx′ ≥ 0

definition 2 (equivalent): for every finite set x1,x2, ...xM

Gramm matrix {K(xi ,xj)}Mi,j=1 � 0 (p.s.d.)

11/47

Kernel methods - Victor Kitov

Kernel construction

Kernel learning - separate field of study.

Hard to prove non-negative definitness of kernel in general.

Kernels can be constructed from other kernels, for example

from:

1 scalar product 〈x,x′〉
2 constant K(x,x′) ≡ 1
3 xTAx for any A < 04

4Under what feature transformation will case 1 transform to cases 2 and 3?

You may use Choletsky decomposition.
12/47

Kernel methods - Victor Kitov

Constructing kernels from other kernels

If K1(x,x
′), K2(x,x

′) are arbitrary kernels, c > 0 is a constant,

q(·) is a polynomial with non-negative coefficients, h(x) and ϕ(x)
are arbitrary functions X → R and X → RM respectively, then

these are valid kernels5:

1 K(x,x′) = cK1(x,x
′)

2 K(x,x′) = K1(x,x
′)K2(x,x

′)

3 K(x,x′) = K1(x,x
′) + K2(x,x

′)

4 K(x,x′) = K1(ϕ(x), ϕ(x
′))

5 K(x,x′) = h(x)K1(x,x
′)h(x′)

6 K(x,x′) = eK1(x,x
′)

5prove some of these statements
13/47

Kernel methods - Victor Kitov

Commonly used kernels

Let x and x′ be two objects.

Kernel Mathematical form

linear 〈x,x′〉
polynomial (γ〈x,x′〉+ r)d

RBF exp(−γ ‖x− x′‖2)

Standard transformation is also sigmoid=tangh(γ〈x, y〉+ r)
but its not a Mercer kernel.

14/47

Kernel methods - Victor Kitov

Addition6

Other kernelized algorithms: K-NN, K-means, K-medoids,

nearest medoid, PCA, SVM, etc.

Kernelization of distance:

ρ(x,x′)2 = 〈φ(x)− φ(x′), φ(x)− φ(x′)〉
= 〈φ(x), φ(x)〉+ 〈φ(x′), φ(x′)〉 − 2〈φ(x), φ(x′)〉
= K(x,x) + K(x′,x′)− 2K(x,x′)

6How can we calculate scalar product between normalized (unit norm)

vectors φ(x) and φ(x′)?
15/47

Kernel methods - Victor Kitov

Addition6

Other kernelized algorithms: K-NN, K-means, K-medoids,

nearest medoid, PCA, SVM, etc.

Kernelization of distance:

ρ(x,x′)2 = 〈φ(x)− φ(x′), φ(x)− φ(x′)〉
= 〈φ(x), φ(x)〉+ 〈φ(x′), φ(x′)〉 − 2〈φ(x), φ(x′)〉
= K(x,x) + K(x′,x′)− 2K(x,x′)

6How can we calculate scalar product between normalized (unit norm)

vectors φ(x) and φ(x′)?
15/47

Kernel methods - Victor Kitov

Kernel support vector machines

Table of Contents

1 Kernel support vector machines

2 Kernel ridge regrssion

16/47

Kernel methods - Victor Kitov

Kernel support vector machines

Linear SVM reminder

Solution for weights:

w =
∑
i∈SV

αiyixi

Discriminant function

g(x) =
∑
i∈SV

αiyi〈xi ,x〉+ w0

w0 =
1

nS̃V

∑
j∈S̃V

yj −
∑
j∈S̃V

∑
i∈SV

αiyi〈xi ,xj〉


where SV = {i : yi(x

T
i w + w0) ≤ 1)} are indexes of all support

vectors and S̃V = {i : yi(x
T
i w + w0) = 1} are boundary support

vectors.
17/47

Kernel methods - Victor Kitov

Kernel support vector machines

Kernel SVM

Discriminant function

g(x) =
∑
i∈SV

αiyiK(xi ,x) + w0

w0 =
1

nS̃V

∑
j∈S̃V

yj −
∑
j∈S̃V

∑
i∈SV

αiyiK(xi ,xj)



18/47

Kernel methods - Victor Kitov

Kernel support vector machines

Kernel results

19/47

Kernel methods - Victor Kitov

Kernel support vector machines

Linear kernel - variable C

20/47

Kernel methods - Victor Kitov

Kernel support vector machines

Linear kernel - variable C

21/47

Kernel methods - Victor Kitov

Kernel support vector machines

Linear kernel - variable C

22/47

Kernel methods - Victor Kitov

Kernel support vector machines

Linear kernel - variable C

23/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable γ

24/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable γ

25/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable γ

26/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable γ

27/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable C

28/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable C

29/47

Kernel methods - Victor Kitov

Kernel support vector machines

RBF kernel - variable C

30/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable d

31/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable d

32/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable d

33/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable d

34/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable C

35/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable C

36/47

Kernel methods - Victor Kitov

Kernel support vector machines

Polynomial kernel - variable C

37/47

Kernel methods - Victor Kitov

Kernel support vector machines

Sigmoid kernel - variable γ

38/47

Kernel methods - Victor Kitov

Kernel support vector machines

Sigmoid kernel - variable γ

39/47

Kernel methods - Victor Kitov

Kernel support vector machines

Sigmoid kernel - variable γ

40/47

Kernel methods - Victor Kitov

Kernel support vector machines

Sigmoid kernel - variable C

41/47

Kernel methods - Victor Kitov

Kernel ridge regrssion

Table of Contents

1 Kernel support vector machines

2 Kernel ridge regrssion

42/47

Kernel methods - Victor Kitov

Kernel ridge regrssion

Ridge regression

Ridge regression criterion:

Q(β) =
N∑

n=1

(
xT

nβ − yn

)2

+ λ

D∑
d=1

β2
d → min

β

Stationarity condition:

dQ(β)

dβ
= 2

N∑
n=1

(
xT

nβ − yn

)
xn + 2λβ = 0

In vector form:

XT (Xβ − Y) + λβ = 0

43/47

Kernel methods - Victor Kitov

Kernel ridge regrssion

Ridge regression

Primal solution:

XTX + λIβ = XTY

β = (XTX + λI)−1XTY

Comment: XTX < 0 (positive semi-definite) and

XTX + λI � 0 (positive definite), so ridge regression is

always identifiable.

Cost of estimation:

XTX + λI: ND2 + D

XTY : DN

(XTX + λI)−1: D3

(XTX + λI)−1XTY : D2

Total training cost is O(ND2 + D3) = O(D2(N + D)).

Cost of prediction ŷ(x) = 〈x, β〉 is D.

44/47

Kernel methods - Victor Kitov

Kernel ridge regrssion

Dual solution

From vector stationarity condition:

XT (Xβ − Y) + λβ = 0

follows the dual solution (a linear combination of training vectors):

β =
1

λ
XT(Y − Xβ) = XTα (1)

where

α =
1

λ
(Y − Xβ) (2)

is called a vector of dual variables.

Prediction:

ŷ(x) = xTβ = xTXTα =
N∑

i=1

αi〈x,xi〉

45/47

Kernel methods - Victor Kitov

Kernel ridge regrssion

Dual solution

To find α we plug (1) into (2):

α =
1

λ
(Y − Xβ) =

1

λ
(Y − XXTα)(

XXT + λI
)
α = Y

α =
(
XXT + λI

)−1

Y

Cost of estimation:

XXT + λI: N2D + N(
XXT + λI

)−1
: N3(

XXT + λI
)−1

Y : N2

Total training cost is O(N2D + N3) = O(N2(D + N)).
Cost of prediction ŷ(x) = 〈x, β〉 is ND.

46/47

Kernel methods - Victor Kitov

Kernel ridge regrssion

Dual solution motivation

Optimal α depends not on exact features but only on scalar

products:

α =
(
XXT + λI

)−1

Y = (G + λI)−1Y

where G ∈ RNxN and {G}ij = 〈xi ,xj〉 - G is called Gram

matrix.

Prediction also depends only on scalar products:

ŷ(x) =
N∑

i=1

αi〈x,xi〉 = αTv

where v ∈ RN and vi = 〈x,xi〉.

47/47

	Kernel support vector machines
	Kernel ridge regrssion

