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Kernel trick

Perform feature transformation: x — ¢(x). Scalar product
becomes (z,z') — (¢(), 6(2')) = K(x.Z)

Define not the feature representation x but only scalar product
function K(x,x’)

o Comments:
e required that the solution depends only on scalar
products.Kernels can be constructed from other kernels, for
example from:
@ scalar product (x,x’)
@ constant K(x,x') =1
© x"Ax forany A = 0
o feature representation ¢(x) not needed
e (x,x') has complexity O(D). Complexity of K(x,x’) may be
o(1).
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Kernelizable algorithms

ridge regression:
K-NN

K-means

PCA

SVM

many more...
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Kernel trick use cases

@ high-dimensional data
o polynomial of order up to M

— e’ ||?
o Gaussian kernel K(x,x') = e 2.2 I===II" corresponds to
infinite-dimensional feature space.

@ hard to vectorize data
e strings, sets, images, texts, graphs, 3D-structures,
sequences, etc.
@ natural scalar product exist

e strings: number of co-occuring substrings
o sets: size of intersection of sets

o example: for sets Sy and S;: K(S1,S2) = 2/517%2l is a possible
kernel.

e etc.

@ scalar product can be computed efficiently
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General motivation for kernel trick

@ perform generalization of linear methods to non-linear case

o as efficient as linear methods
o local minimum is global minimum
@ no local optima=>less overfitting

@ non-vectorial objects

e hard to obtain vector representation
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Kernel definition

@ x is replaced with ¢(x)

o Example: [x] — [x, 22, 2]

Function K(x,x’) : X x X — R is a kernel function if it may be
represented as K(x,x') = (¢(x), ¢(x’)) for some mapping
¢ : X — H, with scalar product defined on H.

e (x,X') is replaced by (¢(x), p(x')) = K(x,x')
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lllustration

0(x)
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9(0)
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Specific types of kernels

o K(x,x') = K(x — x') - stationary kernels (invariant to
translations)

o K(x,x') = K(||x — &/||) - radial basis functions
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Polynomial kernel?

@ Example 1: let D = 2.

K(x,z) = (x z)2 (x1z1 —|—x222) =
= xiz} + 2323 + 2x121%02)

= ¢ (x)9(2)
for ¢(x) = (xf,xz,\/ichz)

2What kind of feature transformation will correspond to K(x,z) = (x"z)"
for arbitrary M and D?
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Polynomial kernel®

@ Example 2: let D = 2.
Kx,z) = (1+x272)?=(1+x1z1 4+ 222,)° =
= 1+ x%z% + x%z% + 2x1z1 + 2x327 + 2x121X225

= ¢/ (x)0(2)
for ¢(x) = (1, x%, x%, V2x1, V25, \f2x1x2)

3What kind of feature transformation will correspond to

K(x,z) = (1+ x"z)" kernels for arbitrary M and D?
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Kernel properties

Theorem (Mercer): Function K(x,x’) is a kernel is and only if
@ it is symmetric: K(x,x') = K(x/, x)
@ it is non-negative definite:

e definition 1: for every function g: X — R

// x,x')g(x)g(x)dxdx’ >0

o definition 2 (equivalent): for every finite set xy, x,,...xym

Gramm matrix {K(x”xj)},/ 1= 0 (p.s.d.)
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Kernel construction

@ Kernel learning - separate field of study.
@ Hard to prove non-negative definitness of kernel in general.

@ Kernels can be constructed from other kernels, for example
from:
@ scalar product (x

Q constant K(x,x’)
@ x"Axforany A =0

x')
=1
4

4Under what feature transformation will case 1 transform to cases 2 and 3?

You may use Choletsky decomposition.
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Constructing kernels from other kernels

If Ky(x,x’), Ko(x,x) are arbitrary kernels, ¢ > 0 is a constant,
g(+) is a polynomial with non-negative coefficients, h(x) and ¢(x)
are arbitrary functions X — R and X — RY respectively, then
these are valid kernels®:

(7] K(x x') = cKi(x,x')
K(x,x') = Ky(x, X" )Ky(x, ')
K(x,x') = Ki(x,x) + Ky(x, x')
K(x,x') = Ki(p(x), p(x'))
K(x,x') = h(x)K1(x, x')h(x')
K(z,x) = eki(x=)

5prove some of these statements
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Commonly used kernels

Let x and x’ be two objects.

] Kernel \ Mathematical form ‘

linear (x,x’)
polynomial (y(x, x) +r)?
RBF | exp(—y [z —2'|F)

e Standard transformation is also sigmoid=tangh(vy(x,y) + r)
but its not a Mercer kernel.

— tangh(x)
- tangh(10z)

IR TR I 0.5 L0 5 2.0
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Addition®

@ Other kernelized algorithms: K-NN, K-means, K-medoids,
nearest medoid, PCA, SVM, etc.

@ Kernelization of distance:

®How can we calculate scalar product between normalized (unit norm)

vectors ¢(x) and ¢(x’)?
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Addition®

@ Other kernelized algorithms: K-NN, K-means, K-medoids,
nearest medoid, PCA, SVM, etc.

@ Kernelization of distance:

plx, ) = (§(x) - o), d(x) — ¢

®How can we calculate scalar product between normalized (unit norm)
vectors ¢(x) and ¢(x’)?
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Kernel support vector machines

Table of Contents

0 Kernel support vector machines
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Kernel support vector machines

Linear SVM reminder

@ Solution for weights:

W= Z Yix;

ieSVY
Discriminant function

g9(x) = Z iy (X, X) + Wo

iesv
1
wo = _— Syi— DY awilxm,x)
SV \jesy jeSVIESY

where SV = {i : y;(x]w + wp) < 1)} are indexes of all support
vectors and SV = {i : y;(x]w + wy) = 1} are boundary support

vectors.
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Kernel support vector machines

Kernel SVM

Discriminant function

g9(x) = Y aiyiK(xi, x) + wo

iesy
1
Wo = % Zv Y — 2 Z aiyiK (i, x;)
€SV jesSy iesy
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Kernel support vector machines

SVC with linear kernel LinearSVC (linear kernel)

Sepal width
Sepal width

Sepal length

Sepal length

SVC with RBF kernel SVC with polynomial (degree 3) kernel

Sepal width

Sepal width

Sepal length Sepal length
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Kernel support vector machines

Linear kernel .C=0'.01
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Kernel support vector machines

ILinelar kernel . C=0.‘ 1
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Kernel support vector machines

| Linear kernel C=1
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Kernel support vector machines

Linear kelrnel .C=1.00
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Kernel support vector machines

IRBF kernel,f--" '_').()1, (' =1 |
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Kernel support vector machines

| RBFIkerne = D.l, CJ"I: 1
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Kernel support vector machines

RBF kerne LY
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Kernel support vector machines

| RBFlkernell, v =30, C =1
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Kernel support vector machines
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Kernel support vector machines
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Kernel support vector machines

RBF kernel.
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Kernel support vector machines

Polynomial kernel. d = 1
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Kernel support vector machines

Polynomial kernel. d =
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Kernel support vector machines

Polynomial kernel. d = 3
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Kernel support vector machines

Polynomial kernel. d = 15
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Kernel support vector machines

aniaI kernel,l d=4,C = 0.001

> b
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Kernel support vector machines

nomial kernell, d=4,C = 0.

> b
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Kernel support vector machines

Pol Inomial kerne .d=4.C = 10

> b
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Kernel support vector machines
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Kernel support vector machines

o

> b

|
Lo hD =
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Kernel support vector machines
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Kernel support vector machines

= o

|
Lo hD =
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© Kernel ridge regrssion
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Kernel ridge regrssion

Ridge regression

@ Ridge regression criterion:

N D
Q(8) = Z (x,fﬁ —!/n)2 +/\Z,B§ — mﬁin
d=1

n=1

@ Stationarity condition:

dQ(5)

dﬁzznzz;<x;5—yn)xn+2)\ﬁzo

@ In vector form:

XT(XB=Y)+A3=0
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Kernel ridge regrssion

Ridge regression
@ Primal solution:

XX+ MB=XT"y
B=X"X+M)XTy

e Comment: X7X = 0 (positive semi-definite) and
XTX + M = 0 (positive definite), so ridge regression is
always identifiable.
@ Cost of estimation:
o XX+ \: ND>+D
o XTY: DN
o (XTX+ )" D3
o (XTX+N)~'XTY: D?
o Total training cost is O(ND? + D3) = O(D?*(N + D)).
@ Cost of prediction y(x) = (x, 3) is D.
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Kernel ridge regrssion
Dual solution

From vector stationarity condition:

XT(XB—-Y)+X3=0
follows the dual solution (a linear combination of training vectors):

g = XT(Y ~XB) = XTa (1)
where 1
a:XW—Xm (2)

is called a vector of dual variables.

Prediction:

Jx)=x"f=x"X"a = Z ai(x, xj)
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Kernel ridge regrssion

Dual solution

To find a we plug (1) into (2):

o= %(Y—Xﬁ) = %(Y—XXTQ)

(xxT+ AI) a=Y
a= ()()(TJFA/)f1 y

Cost of estimation:

XXT + M: N°D+ N

(XXT 4+ A1) ~": A8

(XXT+ M) v: N2

Total training cost is O(N?D + N3) = O(N?(D + N)).
Cost of prediction y(x) = (x, 3) is ND.
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Dual solution motivation

@ Optimal o« depends not on exact features but only on scalar
products:

o= (xxT+ >\I>71 Y =(G+\)Y

where G € R"*N and {G}; = (x;,x;) - G is called Gram
matrix.

@ Prediction also depends only on scalar products:

N
E (1, X :t} = 7-V
i=1

where v € RN and v; = (x, x;).
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