Combinatorial Theory of Overfitting

Konstantin Vorontsov¹
Alexander Frey²
Evgeny Sokolov³

voron@yandex-team.ru
sashafrey@gmail.com
sokolov.evg@gmail.com

¹Yandex, School of Data Analysis ^{1,2}Moscow Institute of Physics and Technology ^{1,3}Moscow State University ¹Computing Center RAS

The Yandex School of Data Analysis conference Machine learning and Very Large Data Sets Moscow, Russia • September 27 – October 2, 2013

Contents

- Combinatorial framework for generalization bounds
 - Overfitting
 - Links to Cross-Validation and Rademacher Complexity
 - Splitting-Connectivity bounds
- 2 Combinatorial theory of overfitting: overview
 - Model sets for which exact bounds are known
 - Bound computation via Random Walks
 - Making bounds observable
- 3 Applications to learning algorithms design
 - Ensembles of Conjunction Rules
 - Ensembles of low-dimensional Linear Classifiers
 - Comparing with state-of-art PAC-Bayesian bounds

The central problem of Statistical Learning

- $X = \{x_1, \dots, x_\ell\}$ a finite training set of objects,
- A a set of classifiers,
- $a = \arg\min_{a \in A} \frac{Err}{a}(a, X)$ the empirical risk minimization, or, more commonly,
- $a = \mu(X)$ a learning algorithm μ trains a classifier a on a set X.

The Generalization Problem:

- How to bound a testing error $Err(a, \bar{X})$, where $\bar{X} = \{x'_1, \dots, x'_k\}$ is an independent testing set?
- ② How to design learning algorithms that generalize well, i.e. have a small testing error $Err(a, \bar{X})$ almost always?

The classical approach to Generalization Bounds

In classical approach one find the uniform convergence conditions:

$$P_{\bar{X}}\left(\sup_{a\in A}\left|P(a)-Err(a,X)\right|\geqslant \varepsilon\right)\leqslant \mathsf{GenBound}(\ell,k,A,\varepsilon)$$

where
$$P(a) = E_{\bar{X}} Err(a, \bar{X})$$
.

The Problem:

ullet GenBound may be very loose: $\sim 10^5..10^{11}$ in realistic cases

To tackle the problem we

- modify the functional at the left-side of the inequality
- propose a combinatorial approach to get the bound

The classical vs. combinatorial approach (#1 from 4)

In classical approach one find the uniform convergence conditions:

$$P_X\Big(\sup_{a\in A} \big|P(a) - Err(a,X)\big| \geqslant \varepsilon\Big) \leqslant GenBound(\ell,k,A,\varepsilon)$$

In combinatorial approach instead of a probability of error P(a) we bound a testing error:

$$\mathsf{P}_{X,\bar{X}}\Big(\sup_{a\in A} \left| \mathit{Err}(a,\bar{X}) - \mathit{Err}(a,X) \right| \geqslant \varepsilon\Big) \leqslant \mathsf{GenBound}(\ell,k,A,\varepsilon)$$

Motivation:

• we bound an empirically measurable quantity of overfitting:

$$\delta(a, X, \bar{X}) = Err(a, \bar{X}) - Err(a, X)$$

• we remove a redundant technical step of *symmetrization* that weakens the bound without adding a sense to the result

The classical vs. combinatorial approach (#2 from 4)

In classical approach one find the uniform convergence conditions:

$$P_X\Big(\sup_{a\in A} \big|P(a)-Err(a,X)\big|\geqslant \varepsilon\Big)\leqslant \mathsf{GenBound}(\ell,k,A,\varepsilon)$$

In combinatorial approach instead of supremum over A we use a learning algorithm μ :

$$\mathsf{P}_{X,\bar{X}}\Big(\big|\mathit{Err}(\mu(X),\bar{X})-\mathit{Err}(\mu(X),X)\big|\geqslant\varepsilon\Big)\leqslant\mathsf{GenBound}(\ell,k,\mu,\varepsilon)$$

Motivation:

- we discard bad classifiers that do not work in a learning task
- ullet we take into account the learning algorithm μ

The classical vs. combinatorial approach (#3 from 4)

In classical approach one find the uniform convergence conditions:

$$P_X\left(\sup_{a\in A}\left|P(a)-Err(a,X)\right|\geqslant \varepsilon\right)\leqslant \mathsf{GenBound}(\ell,k,A,\varepsilon)$$

In combinatorial approach instead of usual i.i.d. assumption we use a uniform distribution over all partitions $\mathbb{X}^L = X \sqcup \bar{X}$:

$$\frac{1}{C_{L}^{\ell}} \sum_{\substack{X \subset \mathbb{X}^{L} \\ |X| = \ell}} \left[\left| Err(\mu(X), \bar{X}) - Err(\mu(X), X) \right| \geqslant \varepsilon \right] \leqslant \mathsf{GenBound}(\mathbb{X}^{L}, \mu, \varepsilon)$$

Motivation:

- we make a left-side part of the inequality empirically measurable
- we make a bound data-dependent
- we remove a redundant step of integration over object space

The classical vs. combinatorial approach (#4 from 4)

In classical approach one find the uniform convergence conditions:

$$P_X\Big(\sup_{a\in A}\big|P(a)-\mathit{Err}(a,X)\big|\geqslant \varepsilon\Big)\leqslant \mathsf{GenBound}(\ell,k,A,\varepsilon)$$

In combinatorial approach instead of two-side deviation we remove $|\cdot|$ and estimate one-side deviation:

$$\mathsf{P}_{X \sim \mathbb{X}^L} \Big[\mathit{Err} \big(\mu(X), \bar{X} \big) - \mathit{Err} \big(\mu(X), X \big) \geqslant \varepsilon \Big] \leqslant \mathsf{GenBound} \big(\mathbb{X}^L, \mu, \varepsilon \big)$$

Motivation:

• we discard a non-interesting case of negative overfitting

Learning with binary loss

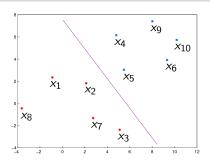
$$\mathbb{X}^L = \{x_1, \dots, x_L\}$$
 — a finite universe set of objects $A = \{a_1, \dots, a_D\}$ — a finite set of classifiers $I(a, x) = [\text{classifier } a \text{ makes an error on object } x]$ — binary loss

Error matrix of size $L \times D$, all columns are distinct:

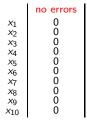
	a_1	a 2	a 3	a 4	a 5	a 6	• • • •	a_D	
<i>x</i> ₁	1	1	0	0	0	1		1	X — observable
	0	0	0	0	1	1		1	training sample
x_ℓ	0	0	1	0	0	0		0	of size ℓ
$x_{\ell+1}$	0	0	0	1	1	1		0	\bar{X} — hidden
	0	0	0	1	0	0		1	testing sample
x_L	0	1	1	1	1	1		0	od size $k = L - \ell$

$$a\mapsto \big(I(a,x_i)\big)_{i=1}^L$$
 — binary *error vector* of classifier a $\nu(a,X)=\frac{1}{|X|}\sum_{x\in X}I(a,x)$ — *error rate* of a on a sample $X\subset \mathbb{X}^L$

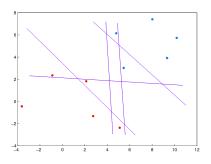
Example. The error matrix for a set of linear classifiers



1 vector having no errors

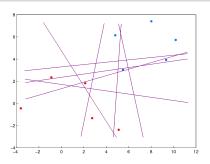


Example. The error matrix for a set of linear classifiers



1 vector having no errors 5 vectors having 1 error

Example. The error matrix for a set of linear classifiers



- 1 vector having no errors
- 5 vectors having 1 error
- 8 vectors having 2 errors

	no errors	1	1 error				2 errors								
V-	0	1	Λ	0	Λ	0	1	Λ	Λ	٥	Λ	1	1	0	
X ₁	Ŏ	Ų	1	ň	ň	ő	1 1	1	ň	ň	ň	Ų	Ų	Õ	
x_2	0	Ö	<u> </u>	1	ŏ	-		1	0	ŏ	ŏ	ŏ	ŏ	1	
<i>X</i> 3	Ü	U	U	1	U	0	U	T	1	U	U	U	U	1	
X4	0	0	0	0	1	0	0	0	1	1	0	0	0	0	
<i>X</i> 5	0	0	0	0	0	1	0	0	0	1	1	1	0	0	
<i>x</i> ₆	0	0	0	0	0	0	0	0	0	0	1	0	1	0	
<i>X</i> 7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
<i>X</i> 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
<i>X</i> 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
X ₁₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Probability of large overfitting

$$\mu \colon X \mapsto a$$
 — learning algorithm $\nu(\mu X, X)$ — training error rate $\nu(\mu X, \bar{X})$ — testing error rate $\delta(\mu, X) \equiv \nu(\mu X, \bar{X}) - \nu(\mu X, X)$ — overfitting of μ on X and \bar{X}

Axiom (weaken i.i.d. assumption)

 \mathbb{X}^L is not random, all partitions $\mathbb{X}^L = X \sqcup \bar{X}$ are equiprobable,

X — observable training sample of a fixed size ℓ ,

 \bar{X} — hidden testing sample of a fixed size k, $L = \ell + k$

Def. Probability of large overfitting

$$Q_{\varepsilon}(\mu, \mathbb{X}^{L}) = \mathsf{P}\big[\delta(\mu, X) \geqslant \varepsilon\big] = \frac{1}{C_{L}^{\ell}} \sum_{X \subset \mathbb{X}^{L}} \big[\delta(\mu, X) \geqslant \varepsilon\big]$$

Bounding problems

Probability of large overfitting:

$$Q_{\varepsilon}(\mu, \mathbb{X}^L) = P[\delta(\mu, X) \geqslant \varepsilon] \leqslant ?$$

Probability of large testing error:

$$R_{\varepsilon}(\mu, \mathbb{X}^L) = P[\nu(\mu X, \bar{X}) \geqslant \varepsilon] \leqslant ?$$

Expectation of OverFitting:

$$\mathsf{EOF}(\mu, \mathbb{X}^L) = \mathsf{E}\,\delta(\mu, X) \leqslant ?$$

• Expectation of testing error (Complete Cross-Validation):

$$\mathsf{CCV}(\mu, \mathbb{X}^L) = \mathsf{E}\,\nu(\mu X, \bar{X}) \leqslant ?$$

Links to Cross-Validation

Taking expectation is equivalent to averaging over all partitions. Expected testing error also called Complete Cross-Validation:

$$\mathsf{CCV}(\mu, \mathbb{X}^L) = \frac{1}{|X|} \sum_{x \in X} \nu(\mu X, \bar{X})$$

Usual cross-validation techniques (e.g. hold-out, t-fold, $q \times t$ -fold, partition sampling, etc.) can be viewed as empirical measurement of CCV by averaging over a representative subset of partitions.

Leave-One-Out is equivalent to CCV for the case k = 1.

:) Combinatorial functionals Q_{ε} , R_{ε} , CCV, EOF can be easily measured empirically by generating $\sim 10^3$ random partitions.

Links to Local Rademacher Complexity

Def. Local Rademacher complexity of the set A on \mathbb{X}^L

$$\mathcal{R}(A, \mathbb{X}^L) = \mathsf{E}_{\sigma} \sup_{a \in A} \frac{2}{L} \sum_{i=1}^{L} \sigma_i I(a, x_i), \qquad \sigma_i = \begin{cases} +1, & \mathsf{prob.} \ \frac{1}{2} \\ -1, & \mathsf{prob.} \ \frac{1}{2} \end{cases}$$

 $\sigma_1, \ldots, \sigma_L$ — independent Rademacher random variables.

Expected overfitting is almost the same thing for the case $\ell = k$:

$$\mathsf{EOF}(\mu, \mathbb{X}^L) = \mathsf{E}\sup_{a \in A} \, \frac{2}{L} \sum_{i=1}^L \sigma_i I(a, x_i), \qquad \sigma_i = \begin{cases} +1, & x_i \in \bar{X} \\ -1, & x_i \in X \end{cases}$$

where μ is overfitting maximization (very unnatural learning!):

$$\mu X = \arg\max_{\mathbf{a} \in A} \left(\nu(\mathbf{a}, \bar{X}) - \nu(\mathbf{a}, X) \right)$$

Links to usual SLT framework

Usual probabilistic assumptions:

 \mathbb{X}^L is i.i.d. from probability space $\langle \mathscr{X}, \sigma, \mathsf{P} \rangle$ on infinite \mathscr{X}

Transferring of combinatorial generalization bound to i.i.d. framework first used in (Vapnik and Chervonenkis, 1971):

Give a combinatorial bound on probability of large overfitting:

$$\mathsf{P}_{X \sim \mathbb{X}^L} \big[\delta(\mu, X) \geqslant \varepsilon \big] = Q_{\varepsilon}(\mu, \mathbb{X}^L) \leqslant \eta(\varepsilon, \mathbb{X}^L)$$

2 Take expectation on \mathbb{X}^L :

$$\begin{split} \mathsf{P}_{X \sim \mathscr{X}^{\ell}, \bar{X} \sim \mathscr{X}^{k}} \big[\delta(\mu, X) \geqslant \varepsilon \big] &= \\ &= \mathsf{E}_{\mathbb{X}^{L}} \ Q_{\varepsilon}(\mu, \mathbb{X}^{L}) \leqslant \mathsf{E}_{\mathbb{X}^{L}} \ \eta(\varepsilon, \mathbb{X}^{L}). \end{split}$$

Splitting-Connectivity graph (1-inclusion graph)

Define two binary relations on classifiers:

partial order
$$a \le b$$
: $I(a,x) \le I(b,x)$ for all $x \in \mathbb{X}^L$; precedence $a \prec b$: $a \le b$ and Hamming distance $||b-a|| = 1$.

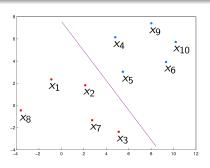
Definition (SC-graph)

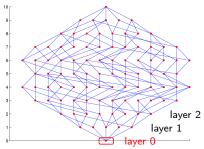
Splitting and Connectivity (SC-) graph $\langle A, E \rangle$: A - a set of classifiers with distinct binary error vectors; $E = \{(a, b): a \prec b\}$.

Properties of the SC-graph:

- each edge (a, b) is labeled by an object $x_{ab} \in \mathbb{X}^L$ such that $0 = I(a, x_{ab}) < I(b, x_{ab}) = 1$;
- multipartite graph with layers $A_m = \{a \in A \colon \nu(a, \mathbb{X}^L) = \frac{m}{L}\}, \ m = 0, \dots, L+1;$

Example. Error matrix and SC-graph for a set of linear classifiers

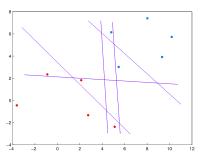


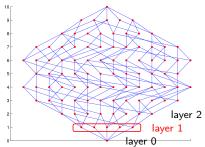


	layer 0
x_1	0
	0
<i>X</i> ₂ <i>X</i> ₃	0
XΛ	0
X ₅	0
<i>x</i> ₆	0
<i>x</i> ₆ <i>x</i> ₇	0
<i>X</i> 8	0
X ₈ X ₉ X ₁₀	0
X10	0

Lavor O

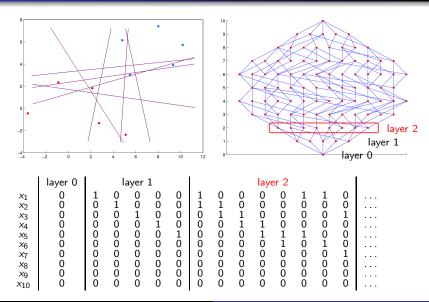
Example. Error matrix and SC-graph for a set of linear classifiers





	layer 0	layer 1					
<i>X</i> 1	0	1	0	0	0	0	
X2	0	0	1	0	0	0	
X3	0	0	0	1	0	0	
X4	0	0	0	0	1	0	
X1 X2 X3 X4 X5 X6 X7 X8 X9	0	0	0	0	0	1	
<i>x</i> ₆	0	0	0	0	0	0	
X7	0	0	0	0	0	0	
<i>X</i> 8	0	0	0	0	0	0	
X9	0	0	0	0	0	0	
X ₁₀	0	0	0	0	0	0	

Example. Error matrix and SC-graph for a set of linear classifiers



Connectivity and inferiority of a classifier

Def. Connectivity of a classifier $a \in A$:

$$u(a) = \#\{x_{ab} \in \mathbb{X}^L : a \prec b\}$$
 — up-connectivity,
 $d(a) = \#\{x_{ba} \in \mathbb{X}^L : b \prec a\}$ — down-connectivity.

Def. Inferiority of a classifier $a \in A$ $q(a) = \#\{x_{cb} \in \mathbb{X}^L : \exists b \ c \prec b \leqslant a\}$

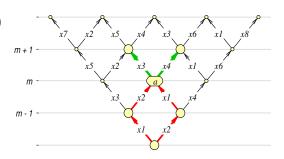
Inferiority:

$$d(a) \leqslant q(a) \leqslant L\nu(a, \mathbb{X}^L)$$

Example:

$$u(a) = \#\{x3, x4\} = 2$$

 $d(a) = \#\{x1, x2\} = 2$
 $q(a) = \#\{x1, x2\} = 2$



The Splitting-Connectivity (SC-) bound

Empirical Risk Minimization (ERM) — learning algorithm μ :

$$\mu X \in A(X), \qquad A(X) = \operatorname{Arg\,min}_{a \in A} \nu(a, X)$$

Theorem (SC-bound)

For any \mathbb{X}^L , A, ERM μ , and $\varepsilon \in (0,1)$

$$Q_{\varepsilon} \leqslant \sum_{\mathbf{a} \in A} \frac{C_{L-u-\mathbf{q}}^{\ell-u}}{C_{L}^{\ell}} H_{L-u-\mathbf{q}}^{\ell-u, m-\mathbf{q}}(\varepsilon),$$

where $m = L\nu(a, \mathbb{X}^L)$, u = u(a), q = q(a),

$$H_L^{\ell, m}(\varepsilon) = \sum_{s=0}^{\lfloor (m-\varepsilon k)\ell/L\rfloor} \frac{C_m^s C_{L-m}^{\ell-s}}{C_L^{\ell}} - \text{hypergeometric tail function}.$$

The properties of the SC-bound

$$Q_{\varepsilon} \leqslant \sum_{a \in A} \frac{C_{L-u-q}^{\ell-u}}{C_{L}^{\ell}} H_{L-u-q}^{\ell-u, m-q}(\varepsilon)$$

• If |A| = 1 then SC-bound gives an exact estimate of testing error for a single classifier:

$$Q_{\varepsilon} = P[\nu(a, \bar{X}) - \nu(a, X) > \varepsilon] = H_L^{\ell, m}(\varepsilon) \leqslant \frac{3}{2}e^{-\varepsilon^2 \ell}$$

② Substitution $u(a) \equiv q(a) \equiv 0$ transforms the SC-bound into Vapnik–Chervonenkis bound:

$$Q_{\varepsilon} \leqslant \sum_{\alpha \in A} H_{L}^{\ell, m}(\varepsilon) \stackrel{\ell=k}{\leqslant} |A| \cdot \frac{3}{2} e^{-\varepsilon^{2} \ell}$$

The properties of the SC-bound

$$Q_{\varepsilon} \leqslant \sum_{a \in A} \frac{C_{L-u-q}^{\ell-u}}{C_{L}^{\ell}} H_{L-u-q}^{\ell-u, m-q}(\varepsilon)$$

• The probability to get a classifier a as a result of learning:

$$P[\mu X = a] \leqslant \frac{C_{L-u-q}^{\ell-u}}{C_L^{\ell}}$$

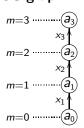
- **⑤** The contribution of $a \in A$ decreases exponentially by: $u(a) \Rightarrow$ connected sets are less subjected to overfitting; $q(a) \Rightarrow$ only lower layers contribute significantly to Q_{ε} .
- **1** The SC-bound is **exact** for some nontrivial sets of classifiers.

Monotone chain of classifiers

Def. Monotone chain of classifiers: $a_0 \prec a_1 \prec \cdots \prec a_D$.

Example: 1-dimensional threshold classifiers $a_i(x) = [x - \theta_i]$;

SC-graph:



Error matrix:

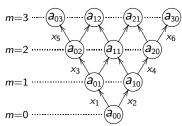
	a 0	a_1	a 2	a 3
<i>x</i> ₁	0	1	1	1
<i>X</i> ₂	0	0	1	1
<i>X</i> 3	0	0	0	1
<i>X</i> 4	0	0	0	0
<i>X</i> ₅	0	0	0	0
<i>x</i> ₆	0	0	0	0

Two-dimensional monotone lattice of classifiers

Example:

- 2-dimensional linear classifiers,
- 2 classes $\{\bullet, \circ\}$,
- 6 objects

SC-graph:



Error matrix:

	a 00	a 01	a 10	a 02	a ₁₁	a 20	a 03	a 12	a 21	a 30
<i>x</i> ₁	0 0 0 0 0	1	0	1	1	0	1	1	1	0
<i>X</i> ₂	0	0	1	0	1	1	0	1	1	1
<i>X</i> 3	0	0	0	1	0	0	1	1	0	0
<i>X</i> ₄	0	0	0	0	0	1	0	0	1	1
<i>X</i> ₅	0	0	0	0	0	0	1	0	0	0
<i>X</i> ₆	0	0	0	0	0	0	0	0	0	1

Sets of classifiers with known combinatorial bounds

Model sets of classifiers with exact SC-bound:

- monotone and unimodal *n*-dimensional lattices (Botov, 2010)
- pencils of monotone chains (Frey, 2011)
- intervals in boolean cube and their slices (Vorontsov, 2009)
- Hamming balls in boolean cube and their slices (Frey, 2010)
- sparse subsets of lattices and Hamming balls (Frey, 2011)

Real sets of classifiers with tight computable SC-bound:

- conjunction rules (Ivahnenko, 2010)
- linear classifiers (Sokolov, 2012)
- decision stumps or arbitrary chains (Ishkina, 2013)

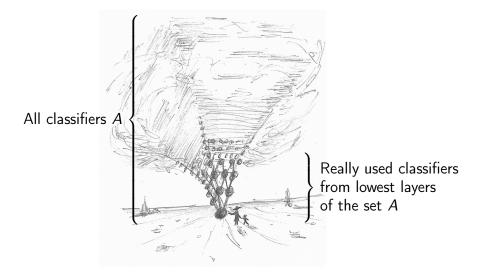
Real sets of classifiers with exact computable not-SC bound:

- k nearest neighbor classification (Vorontsov, 2004; Ivanov, 2009)
- isotonic separation (Vorontsov and Makhina, 2011; Guz, 2011)

Some theoretical and practical results for model sets

- Necessary and sufficient conditions for the SC-bound exactness:
 - 1) a graph must have unique source and unique sink
 - 2) for any $a \in A$ with n outgoing edges a set A must contain an n-dimensional cube induced by these edges (Zhivotovskiy, 2012)
- 2 Low-dimensional unimodal lattice can be used to approximate a set of rules in decision tree nodes. This helps to find less overfitted node splits (Botov, 2011)
- Overing a set of classifiers A by slices of Hamming balls helps to obtain tighter generalization bound (Frey, 2013)

Splitting gives an idea of effective SC-bound computation



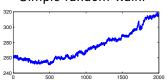
SC-bound computation via Random Walks

- 1. Learn a good classifier
- 2. Run a large number of short walks to get a subset $B \subset A$
- 3. Compute a partial sum $Q_{\varepsilon} \approx \sum_{a \in B} \operatorname{summand}(a)$

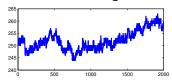
Special kind of Random Walks for multipartite graph:

- 1) based on Frontier sampling algorithm
- 2) do not permit to walk in higher layers of a graph
- 3) estimate contributions of layers separately

Simple random walk:



Random walk with gravitation:



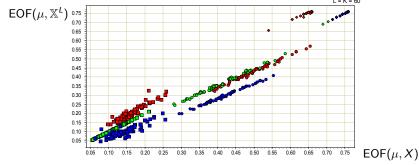
L = K = 60

Making bounds observable

 $\mathsf{SCbound}(\mu,\mathbb{X}^L)$ depends on a hidden set \bar{X} , then we use $\mathsf{SCbound}(\mu,X)$ instead.

Open problems: is it correct? why? may be not always?

Really EOF(μ , X) is well concentrated near to EOF(μ , X^L): Experiments on model data, L=60, testing sample size K=60



Ensemble learning

2-class classification problem:

$$(x_i, y_i)_{i=1}^L$$
 — training set, $x_i \in \mathbb{R}^n$, $y_i \in \{-1, +1\}$

Ensemble — weighted voting of base weak classifiers $b_t(x)$:

$$a(x) = \operatorname{sign} \sum_{t=1}^{T} w_t b_t(x)$$

Main idea is to apply generalization bound as features selection criterion in base classifiers

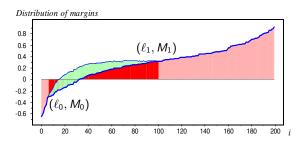
Our goals:

- 1) to reduce overfitting of base classifiers
- 2) to reduce the complexity of composition T

ComBoost: Committee boosting

Instead of objects reweighting ComBoost trains each base classifier on the training subset $X' \subset X$ in order to augment margins of the ensemble as much as possible:

$$X' = \left\{ x_i \in X : M_0 \leqslant \mathsf{Margin}(i) \leqslant M_1 \right\}$$
$$\mathsf{Margin}(i) = y_i \sum_{t=1}^T w_t b_t(x_i).$$



Learning ensembles of Conjunction Rules

Conjunction rule is a simple well interpretable 1-class classifier:

$$r_y(x) = \bigwedge_{j \in J} [f_j(x) \leq_j \theta_j],$$

where $f_j(x)$ — features $J \subseteq \{1, ..., n\}$ — a small subset of features

 θ_i — thresholds

 \leq_i — one of the signs \leq or \geq

y — the class of the rule

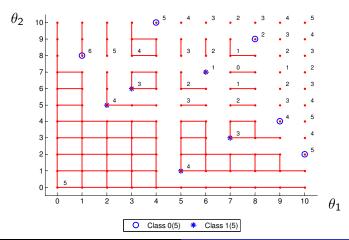
Weighted voting of rule sets R_y , $y \in Y$:

$$a(x) = \arg\max_{y \in Y} \sum_{r \in R_v} w_r r(x)$$

We use SC-bounds to reduce overfitting of rule learning

Classes of equivalent rules: one point per rule

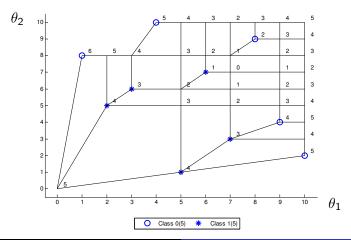
Example: separable 2-dimensional task, L=10, two classes. rules: $r(x) = \lceil f_1(x) \leqslant \theta_1 \rceil \land \lceil f_2(x) \leqslant \theta_2 \rceil$.



Classes of equivalent rules: one point per class

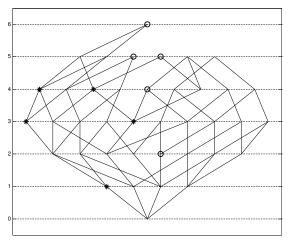
Example: the same learning task.

rules:
$$r(x) = \lceil f_1(x) \leqslant \theta_1 \rceil \land \lceil f_2(x) \leqslant \theta_2 \rceil$$
.



Classes of equivalent rules: SC-graph

Example: SC-graph isomorphic to the graph at previous slide.



Experiment on UCI real data sets. Results

	tasks							
Algorithm	austr	echo	heart	hepa	labor	liver		
RIPPER-opt	15.5	2.97	19.7	20.7	18.0	32.7		
RIPPER+opt	15.2	5.53	20.1	23.2	18.0	31.3		
C4.5(Tree)	14.2	5.51	20.8	18.8	14.7	37.7		
C4.5(Rules)	15.5	6.87	20.0	18.8	14.7	37.5		
C5.0	14.0	4.30	21.8	20.1	18.4	31.9		
SLIPPER	15.7	4.34	19.4	17.4	12.3	32.2		
LR	14.8	4.30	19.9	18.8	14.2	32.0		
our WV	14.9	4.37	20.1	19.0	14.0	32.3		
our WV + CS	14.1	3.2	19.3	18.1	13.4	30.2		

Two top results are highlighted for each task.

Vorontsov K. V., Ivahnenko A. A. Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules // LNCS. PReMI'11, 2011. Pp. 66–73.

Liner classifiers and ensembles

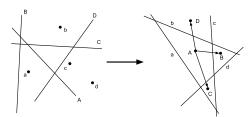
Linear classifier: $a(x) = sign\langle w, x \rangle$

Ensemble of low-dimensional linear classifiers

$$a(x) = \operatorname{sign} \sum_{t=1}^{T} \operatorname{th} \langle w_t, x \rangle$$

Random Walks for SC-bound computation

1) find all neighbor classifiers in the dual space:



2) lookup along random rays

Experiment 1: ComBoost ensemble of linear classifiers

	statlog	waveform	wine	faults
ERM + MCCV	85,35	87,56	71,63	73,62
ERM + SC-bound	85,08	87,66	71,08	71,65
LR + MCCV	84,04	88,13	71,52	70,86
LR	80,77	87,34	71,49	71,09
PacBayes DD	82,13	87,17	64,68	67,67

The percentage of correct predictions on testing set (averaged over 5 partitions). Two top results for every task are shown in **bold**.

Feature selection criteria:

- ERM learning by minimizing error rate from subset of classifiers sampled from random walks
- LR learning by Logistic Regression
- MCCV Monte-Carlo cross-validation
- DD PAC-Bayes Dimension-Dependent bound (Jin, 2012)

Experiment 2: comparing bounds for Logistic Regression

All bounds are calculated from subset generated by random walk

- MC Monte-Carlo bound (very slow)
- SC Splitting-Connectivity bound
- VC Vapnik–Chervonenkis bound
- DD Dimension-Dependent PAC-Bayes bound (Jin, 2012)

UCI Task	MC	SC	VC	PAC DD
glass	0.115	0.146	0.356	0.913
liver	0.095	0.533	0.595	1.159
ionosphere	0.083	0.149	0.238	1.259
wdbc	0.052	0.070	0.136	0.949
australian	0.043	0.244	0.277	0.798
pima	0.045	0.373	0.410	0.823

Conclusions:

- 1) combinatorial bounds are much tighter than PAC-Bayes bounds
- 2) SC-bound initially proved for ERM fit well for Logistic Regression

Conclusions

Combinatorial framework

- gives tight (in some cases exact) generalization bounds
- that can be computed approximately from Random Walks
- bypass significantly state-of-art PAC-Bayesian bounds

Restrictions:

- binary loss
- computational costs
- low sample sizes, low dimensions

Further work:

- more effective approximations
- bigger sample sizes, bigger dimensions
- more applications

Questions?

Konstantin Vorontsov voron@yandex-team.ru

www.MachineLearning.ru/wiki (in Russian):

- Участник:Vokov
- Расслоение и сходство алгоритмов (виртуальный семинар)
- Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)