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Latent variables ML

Suppose objects have observed features x and unobserved (latent)

features z1.

e [x,z] ~ p(x,z,0), x ~ p(x,6)
e denote X = [x1,x,..xn|, Z = [21, 22, ...Zn].
To find & we need to solve

= = |
L(6) = Inp(X|0) = In ;p(X, Z|9) — max
@ This is intractable for unknown Z.
@ We need to fallback to iterative optimization, such as SGD.

@ Alternatively, we may use EM algorithm, which “averages” over
different fixed variants of Z.

1They are considered discrete here. Everything holds true for continious

latent variables if everywhere you replace summation over Z with integration
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General idea of EM algorithm

o Initialize 50 randomly, t =0

@ Repeat until convergence:
O 5:(0) is estimated as lower bound for In p(X|6), tight for 6,
(2] §t+1 = arg max, g:(0)
Qt=t+1
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Distribution of latent variables

Let’s introduce g(Z) - some distribution over latent variables Z,
4(Z) >0, 5, q(Z) = 1. Then

L(0) = Inp(X|0) = IanXZ\H

p(X, Z16)
=Y q(2)P 2 (1)
ZZ: qa(2)
p(X,Z|0
= Tan g =50) @)
On the last step we used Jensen's inequality In (Eu,) > E (Inu,)
applied to
© Inx which is strictly concave, because (Inx)” = —2% <0
. . . . X,Z70 o
@ for r.v. U € R with distribution p (U = %) = q(Z) for
different Z.
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Making lower bound tight

We can select q(Z) so that at fixed 6 L(0) = g(0):

@ Since In x is strictly concave, equality in inequality (1)-(2) is
achieved <=> U = EU with probability 1.

@ This happens when % = ¢ for some constant ¢ VZ.

@ Using property Y, q(Z) =1 we have

c> q(2)=c=> p(X,Z|0) = p(X|0)
V4

z
@ So for lower bound g(6) to be tight at , we need to take

N )

p(xjp) ~ PEO)
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EM algorithm

INPUT:
training set X = [x1,...xn]
some initialization for @
some predefined convergence criteria

ALGORITHM:
t=0, 6o - init randomly

repeat until convergence:
E-step: set distribution over latent variables:

qa(Z) = p(Z|X,6:)
M-step: improve estimate of 6:
Besr = argmaxe {3, q(Z) In 22210}
t=t+1

OUTPUT:
ML estimate §H4 for the training set.
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Equivalent M-step

M-step can be equivalently represented as

Ors1 = arg m;x{z q(Z)In W}
V4
=argmax{d _ q(2)Inp(X, Z|0) = > _a(Z)Inq(2)}
z z

=argmax{) _q(Z)Inp(X, Z|0)}
V4

=arg meax{z p(Z|X,0:) In p(X, Z|0)}
V4

= arg amax{IEZ{ln p(X,Z10)}, Z~q(Z)=p(Z|X,0;)
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Comments

EM estimates of 0 on each iteration 51, 52/\, 53, Iiad to
non-decreasing sequence of likelihoods L(61) > L(62) > L(63) > ...

Proof. @ Suppose that at iteration t we have L(@)

© At the E-step among all lower bounds g(6) < L(6) V0 we
select such lower bound g;(+), that L(@t) (9 ) (by
selecting q,(Z)).

© On M-step we find 01 = arg max, gt(0), so
gt(0e+1) > g:(0e)

O Since g:(*) is lower bound, we have

L(Ber1) > ge(0era) > ge(0e) = L(0:)

Since L(é\t) is non-decreasing and is bounded from above
(L(9) < ZnN:1 In1=0) it converges.
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Comments on EM algorithm

@ On M-step g(Z) does not depend on 6, since this parameter
was taken fixed from E-step.

@ Possible convergence criteria:
Ori1 — 0:
(] L(9t+1) - L(Gt) <e€

e maximum number of iterations reached

° <e

@ EM converges to local optimum
e to improve quality it is good to
@ re-run algorithm from different initial conditions
o select estimate that gives the greatest likelihood

@ To guarantee convergence it is not required to solve
f:1 = arg maxg g¢(0) precisely.
e we can make very coarse (e.g. single step) optimization here
o this is called GEM algorithm (generalized EM)
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Comments on EM algorithm

@ EM can also be applied for MAP optimization

@ Define J(Q,0) =>,q(Z)In p(X(Z)\@)_

e We know that L(6) > J(Q,0) for all Q = Q(2).
o EM algorithm can be viewed as coordinate ascent:
o E-step maximizes J(Q,0) w.rt. Q2
o M-step maximizes J(Q,0) w.r.t. 6

2\We know that, because we chose such Q that ensure equality in Jensen’s
inequality.
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Independent observations

Independent observations

o Consider special case, when (x,, z,) are i.i.d.3
o Examples:.

@ z, is unknown mixture component, generating x,
® Zz, are missing variables in i.i.d. x,

o E-step becomes:

q(Z2) = p(Z|X,0) = p(z1x1,0)...p(2nIxn, 0) = q1(21)---an(zn)

for
qn(zn) = P(Zn‘Xm 9)

3i.i.d.=independent and identically distributed.
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Independent observations

Independent observations

o M-step becomes:

0 =arg max{z Z)Inp(X, Z|0)}

—arg m;X{Z q(2) Z In p(xn, zn|6)}

= arg max{z Z q(z1,...zn) In p(xn, z4]0) }

n= 1217 -ZN

—argmax{z Z q1(z1)---qn(zn) In p(xn, zn|0) }

n— 121,

= arg mgax{z Z Gn(zn) In p(xn, z2|0)}

n=1 2z,
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Distribution of latent variables-MAP estimate

Consider r.v. 6 with prior distribution 8 ~ p(6) . A prosteriori
likelihood:

L(A) = Inp(B) + In p(X|0) = In p(X, ) IanX Z,0)

S g(z)PXZ0)
= | ; q(2)" W2 (3)
p(X,Z,0) p(X, Z|0)p(0)
>Z )In 7) ZZ:q(ZN T (4)
_ Z a(Z)Inp(X, Z|0) +Inp(6) — > q(Z)Inq(Z) = g(0)
Z z
const(0)
(5)

Once again here we used Yensen's inequality.
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EM for MAP estimates

Making lower bound tight-MAP estimate

We can select q(Z) so that at fixed 6 L(0) = g(0):

@ Since Inx is strictly concave, equality in inequality (3)-(4) is
achieved <=> U = EU with probability 1.
@ This happens when % = ¢ for some constant ¢ VZ.

@ Using property Y, q(Z) =1 we have

CZq(Z) = C:Zp(X,Z,Q) :p(X70)
V4 V4

@ So for lower bound g(6) to be tight at , we need to take

(X,Z,0)

A(2)=E5 ey = PEx.0)
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EM for MAP estimates

EM algorithm - MAP

INPUT:
training set X = [xi,...xn]
some initialization for 6
some predefined convergence criteria

ALGORITHM:
t=0, 0 - init randomly

repeat until convergence:
E-step: set distribution over latent variables:
q(Z) = p(Z|X,0:)
M-step: improve estimate of 6
fpi1 = arg maxg{>_, q(Z)In 2 :éIO) +Inp(6)}
t=t+1
OUTPUT :
ML estimates 9H4 for the training set.
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