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Kuhn-Takker conditions

Consider the optimization task:

{f(x) — miny

1
gi(x) <0 i=12,..m M

Theorem (necessary conditions for optimality):

Let
@ x* - be the solution to (1),
o f(x*) and g;(x*), i = 1,2,...m - continuously differentiable at x*.
@ one of the conditions of regularity is satisfied

Then coefficients Ay, Ay, ...\, exist, such that x* satisfies the
conditions:

V(x*)+ 37 AiVgi(x*) =0 stationarity

gi(x*) <0 feasibility 2
A>0 non-negativity
Xigi(x*) =0 complementary slackness
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Kuhn-Takker conditions

Possible regularity conditions:
e {Vgj(x*), j €/} - linearly independent, where J are indexes
of active constraints J = {j : g;(x*) = 0}.
@ Slater condition: Jx : g;(x) < 0V/ (applicable only when
f(x) and g;(x), i = 1,2,...m are convex)

Sufficient conditions of optimality:

If f(x) and g;(x), i =1,2,...m are convex, Kuhn-Takker
conditions (2) and Slater conditions become sufficient for x* to be
the solution of (1).
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Convex optimization

Why convexity of f(x) and g;(x), i = 1,2,...m is convenient:
@ All local minimums become global minimums
@ The set of minimums is convex

e If f(x) is strictly convex and minimum exists, then it is
unique.
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Main idea
Select hyperplane maximizing the spread between classes.
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Support vector machines

Objects x; for i = 1,2, ...n lie at distance b/|w| from discriminant
hyperplane if

{xirw—i—woZb, yi=+1 5 N

x,-Tw—i— wp < —b y=-1
This can be rewritten as
yi(xIw+wo) >b, i=12.N.

The margin is equal to 2b/|w|. Since w, wqy and b are defined up
to multiplication constant, we can set b = 1.
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Linearly separable case

Problem statement

Problem statement:

Iww — min
w,wq

y;(x,.Tw+ wo) >1, i=12..N.
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Linearly separable case

Problem statement

Problem statement:

Iww — min
w,wo

y,-(xirw+ wo) >1, i=12..N.

Lagrangian:
1 N
L= EwTw — ;a;(yi(wrx +wg) — 1)
=
By Karush-Kuhn-Takker the solution satisfies:

oL _ @ OL _
w =0 5,=0

yi(x]w+wp) —1>0,
a,-(y,-(xiTw + W()) — 1) = 0,
a;>0, i=12..N
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Linearly separable case

Support vectors

non-informative observations: y;(x/w + wg) > 1
@ do not affect the solution

support vectors: y;(x,.Tw +wp) =1
@ lie at distance 1/|w/| to separating hyperplane
@ affect the the solution.

o
Hycwle +wy = +1
<

o
<

©
w

origin i b g=>0
g < 0~ hyperplane, g(z) = w"x +wy =0
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Linearly non-separable case

%WTW — min
w,wo

y,-(x,-Tw+ wo)>1, i=12,..N.
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Linearly non-separable case

%WTW — min
w,wo

y,-(x,-Tw+ wo)>1, i=12,..N.

Problem
Constraints become incompatible and give empty set!
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Linearly non-separable case

No separating hyperplane exists. Errors are permitted by
including slack variables &;:

IWw+ SN & — minge
yiwlxi+wo) >1-&,i=1,2,..N
>0 =12 N

@ Parameter C is the cost for
misclassification and controls the
bias-variance trade-off.

@ It is chosen on validation set.

@ Other penalties are possible, e.g.

Ccy, ¢
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Linearly non-separable case

Lagrangian:

1 N N
L= EWTW + CZE/ = eilyiw i+ wo) =1+ &) = > i
!

i=1 i=1

By Karush-Kuhn-Takker conditions, the solution satisfies
constraints:

o _ g O _ o Olp _
Bw_o’ 8W0_07 8{,_0

§>0,0>0,r;>0
yi(x/w+wo) > 1-¢,
oz,-(y,-(wa,- + Wo) -1+ f,) =0
kr,~§,~:0, i:1,2,...N
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Classification of training objects

@ Non-informative objects:
o yi(wlx; +wp) > 1
@ Support vectors SV:
o yi(w'xi+wp) <1 -
o boundary support vectors SV:
o yi(w'xi4+wp) =1
o violating support vectors:

o yi(wx; + wp) > 0: violating support vector is correctly
classified.
° y/(wrx/ + wp) < 0: violating support vector is misclassified.
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Solving Karush-Kuhn-Takker conditions

N
oL
E =0: W:Zaiyixi (3)

6W0 =0: Za,y,—o

oL
87&:0:6—04,'—"[:0 (4)
Substituting these constraints into L, we obtain the dua/

prob/em1 :

Lp= Z, 1% — 3 Z/ 122j= 10‘/0‘/%%35 [xj — max,
291:1 oY = 0 (5)
0 <a; <C (using (4) and that o; > 0, r; > 0)

"Dual Lagrangian is maximized because original Lagrangian has saddlepoint
in optimum, min for w, wy, & and max L% i, ri.
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Linearly non-separable case

Comments on support vectors

@ non support vectors: y;(w'x; +wp) > 1<=> ¢ =0,
yiwlxi+wy) —14+&>0=>0;=0
e support vectors SV will have «; > 0.
@ non-boundary support vectors SV \ SV: yi(w'xi +wp) < 1
<=>§>0=>r=0<=>qo;=C.
@ boundary support vectors Sy: yiwlxi+wy)=1=>¢=0
e since «; € [0,C], a; € (0,C) for boundary support vectors.
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Solution

@ Solve (5) to find optimal dual variables o}

@ Using (3) and that o} = 0 for non support vectors, find
optimal w

*
w= § O YiXj

iesy

© wy can be found from any edge equality for boundary
support vector:

yi(xIw+wy) =1, Vie SV (6)

19/29



SVM - Victor Kitov

Support vector machines

Linearly non-separable case

Solution for wy
By multiplyting (6) by y; obtain
x,-Tw+w0:y,- Vie Sy

By summing over all i/ € SV for more robust solution we obtain
T
nsywo =) <U/ — W> DU D% Y oy
jesv jesv jesv €SV

where ng;, is the number of boundary support vectors.
Finall solution for wy:

(X0 X 3 s

jeSV jeSviesy
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Making predictions

@ Solve dual task to find a7, i =1,2,..N

S — 35N SN qiogyiyxi, x;) — maxg
27:1 ayi =0
0 <a; <C (using (4) and that o; > 0, r; > 0)

@ Find optimal wy:

wo = L Sy >0 ofyixixp)

ng ~ =
SV \jesv  jesviesy

© Make prediction for new x:

§ = sign[w’x + wo] = sign[ Y _ afyi(x;, ) + wol
iesv
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Making predictions

© Solve dual task to find o, i = 1,2,..N

Lp= Z,I'V:1 Qj — %Z;va 27:1 QiQYiY;(Xi, Xj) — MaXq
Z;v:1 ajy; =0
0 <a; <C (using (4) and that o; > 0, r; > 0)

© Find optimal wy:

wo=— (-3 Y iz z)

ne - <
SV \jesv  jesviesy

© Make prediction for new x:

g = sign[w’x + wo] = sign[ Y _ o7 yi(z, x) + wol
ieSy

@ On all steps we don’t need exact feature representations,
only scalar products (x,x')} ,,
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Kernel trick generalization

© Solve dual task to find o, i = 1,2,..N

Lp= Z;Va Q@ — %Z;V:1 Z;Va ajajyiyiK (xi, 2j) — maxq
Z;V:1 aiy; =0
0 <q; <C (using (4) and that o; > 0, r; > 0)

© Find optimal wy:

wo = L Sy= Y efyK(x,x))

ne - .
SV \jesv  jesviesy

© Make prediction for new x:
7 = sign[w’x + wp] = sign[z o yiK(xi, xj) + wo)
ieSVY

@ We replaced (x,x’) — K(x,x') for K(x,x') = (¢(x), o(x'))
for some feature transformation ¢(-).
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Another view on SVM

Optimization problem:

%WTW+CZ;\I:1 & — minw’g
yi(w'xj +wo) = Mi(w, wo) >1-&, |
§>0 =12 N g

can be rewritten as

N
1 2
— +§ 1-M; — mi

Thus SVM is linear discriminant function with cost approximated
with L(M) = [1 — M| and L, regularization.
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Sparsity of solution

@ SVM solution depends only on support vectors

@ This is also clear from loss function, satisfying £L(M) = 0 for
M>1.

o objects with margin> 1 don’t affect solution!
@ Sparsity causes SVM to be less robust to outliers
o because outliers are always support vectors
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Multiclass classification

C classes w1, wy, ...wc.

@ One-against-all:

e build C binary classifiers, classifying class w; against other
classes
o select the class with highest margin

@ One-against-one:

e build C(C-1)/2 classifiers, classifying class w; against w;.
o select the class having maximum votes

@ Multiclass variant of initial algorithm
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SVM regression

Predict real-valued output with

~cy T

y(x) = w'x+ wy
where parameters w, wy are found from

(x7xn+wo) —yn <e+&

yn — (2T +wo) < e+,
énvgn ZO, n = 1,2,N

W+ CN (6 +&) = min e e

Gives c-insensitive loss!
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Multiclass SVM

C discriminant functions are built simultaneously:
g(x) = (W) x + wg
Linearly separable case:
S (wF)Twk — min,,
(WY T + wg(') — (W) x —wk > 1 VK #y(i),
i=12...N.
Linearly non-separable case:
> (W) WK+ CYO & — miny,
(W Tx + w0 — (Wk) Tz —whk > 1—¢& VK # y(i),
>0, i=12..N.

Is slower, but shows similar accuracy to usual SVM.
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