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Abstract

In the paper we propose a new type of
regularization procedure for training sparse
Bayesian methods for classification. Trans-
forming Hessian matrix of log-likelihood
function to diagonal form with further reg-
ularization of its eigenvectors allows us to
optimize evidence explicitly as a product of
one-dimensional integrals. The process of au-
tomatic regularization coefficients determina-
tion then converges in one iteration. We show
how to use the proposed approach for Gaus-
sian and Laplace priors. Both algorithms
show comparable performance with the state-
of-the-art Relevance Vector Machines (RVM)
but require less time for training and pro-
duce more sparse decision rules (in terms of
degrees of freedom).

1. Introduction

Bayesian methods have become very popular tech-
nique for classification during the last years (Bishop,
2006; Neal, 1996). Within this framework structural
parameters (sometimes called model parameters) are
considered to be the hyperparameters defining the
family of possible classifiers. Conceptually there are
two approaches to the determination of the hyperpa-
rameters. One approach is based on Automatic Rel-
evance Determination (ARD) originally proposed by
MacKay (MacKay, 1992) and leads to evidence (or
type-II likelihood) maximization. Probably the most
known algorithm which uses ARD is Relevance Vector
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Machine (RVM) (Tipping, 2000), where each weight
has individual regularization coefficient that is ad-
justed iteratively during training. This algorithm is
an example of sparse Bayesian classifier with the most
of weights tend to zero. RVM may operate only with
Gaussian priors over the weights. On the other hand
it is known that Laplace priors are sparsity-promoting
and may set a number of weights exactly to zero thus
discovering irrelevant objects or features (Williams,
1995). However, direct application of Laplace prior to
RVM is impossible due to intractable integral which
arises in the expression for evidence.

Alternative strategy is to integrate out hyperparame-
ters obtaining parameter-free prior and then to max-
imize the product of this marginalized prior and like-
lihood function. It was first proposed by Williams
(Williams, 1995) exactly for working with Laplace pri-
ors and later was used successfully for processing large
number of features in biomedical data (Cawley & Tal-
bot, 2006) and for multi-class problems (Cawley et al.,
2007). Unfortunately within this framework some use-
ful properties of the problem may be lost. For exam-
ple in the case of linear models the implementation
of such prior with hyperparameters being integrated
out results in the problem where criterion function is
multi-modal, often extremely so (Tipping, 2001).

In this paper we propose an approach which allows
us to apply evidence framework for both types of pri-
ors. To achieve this we transform Hessian matrix of
log-likelihood function to diagonal form, establish in-
dividual priors over each of eigenvectors and use ARD
for estimating the values of the corresponding hyper-
parameters. In case of such priors the expression for
evidence can be decomposed to the product of inde-
pendent one-dimensional integrals each responsible for
one degree of freedom. This approach is quite general
since it does not depend on the particular form of prior
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and only requires that priors regularize each eigenvec-
tor independently. Besides that it seems more rea-
sonable to assign individual regularization coefficients
to the degrees of freedom defined by the eigenvectors
of log-likelihood Hessian rather than to the weights
which may contribute both to relevant and irrelevant
eigenvectors.

Such transformation factorizes the evidence. It be-
comes a product of one-dimensional integrals that can
be optimized individually. This fact provides conver-
gence of training process in one iteration. The number
of relevant eigenvectors (degrees of freedom) becomes
less than the number of zero-weights in RVM providing
decision rules with fewer number of parameters.

The rest of the paper is organized as follows. Section 2
gives some notation, briefly describes evidence frame-
work and presents problems arising when one tries to
apply Laplace prior within the framework. In Section 3
we describe our approach and illustrate its application
for the Gaussian and Laplace priors. The compara-
tive evaluation of accuracy, training time and sparsity
with RVM is given in Section 4. Finally the work is
summarized and conclusions are drawn in Section 5.

2. Evidence Framework

2.1. General Formulation

Suppose we are given a set of training objects
{(~xi, ti)}n

i=1 = (X , T ) that are described by d-
dimensional real vector of features ~x ∈ Rd and class
label that may take one of two values t ∈ {−1, +1}.
The classifier is determined by the vector of weights
~w. Given the feature vector it returns posterior esti-
mate for each class P (−1|~x, ~w) and P (+1|~x, ~w). The
likelihood function of correct classification of training
set is given by

P (T |X , ~w) =
n∏

i=1

P (ti|~xi, ~w).

The set of possible classifiers is defined by prior
P (~w|~α). Finding the weights according to maximum
a posteriori rule ~wMP = arg max P (T |X , ~w)P (~w|~α) is
equivalent to the use of additive regularizer when opti-
mizing logarithm of posterior. Hence the hyperparam-
eters ~α can be regarded as regularization coefficients.

Bayesian inference assumes that decision is made by
weighted voting throughout the whole set of possible
classifiers within a model and, in case of multiple pos-
sible models, throughout the whole set of models as
well. Then the posterior for the classification of new

object ~x can be written as

P (t|~x, T ,X ) =∫

A

∫

W(~α)

P (t|~x, ~w, ~α)P (~w, ~α|T ,X )d~wd~α =
∫

A

∫

W(~α)

P (t|~x, ~w, ~α)P (~w|T ,X , ~α)P (~α|T ,X )d~wd~α.

(1)

MacKay has proposed to approximate P (~α|T ,X ) with
δ(~α−~αMP ) where ~αMP is maximum evidence estimate

~αMP = arg max E(~α),

where evidence is computed as likelihood of model

E(~α) = P (T |X , ~α) =∫

W(~α)

P (T |X , ~w, ~α)P (~w|T ,X , ~α)d~w. (2)

Then expression (1) can be approximated in the fol-
lowing way

P (t|~x, T ,X ) ≈
∫

W(~αMP)

P (t|~x, ~w, ~αMP )P (~w|T ,X , ~αMP )d~w. (3)

2.2. Relevance Vector Machine

In 2000 Tipping applied evidence framework for au-
tomatically adjusting individual regularization coeffi-
cients in generalized linear models

y(~x, ~w) =
M∑

i=1

wiφi(~x).

The likelihood function is given by

P (t|~x, ~w, ~α) =
1

1 + exp(−ty(~x, ~w))
(4)

with normal priors on each weight wi ∼ N (0, α−1
i ).

For evidence estimation Tipping used Laplace approx-
imation of subintegral function in (2). Such formula-
tion allowed him to apply ARD by iteratively adjusting
~α and led to very sparse decision rules with the most of
weights set to zero. Alternative method suggested in
(Bishop & Tipping, 2000) uses variational inference to
get better approximation of subintegral function with
a Gaussian.

In case of generalized linear models integration
(3) can be reasonably well approximated by tak-
ing only the most probable weights ~wMP =
arg max~w P (~w|T ,X , ~αMP ).
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Algorithm 1 Gaussian REVM (GREVM)
input Training data (X , T ) = {~xi, ti}n

i=1, ~xi ∈
Rd, ti ∈ {−1, 1}, a set of basis functions {φi(~x)}M

i=1.
1: Find maximum of log-likelihood function ~wML =
arg max

~w
log P (T |X , ~w).

2: Take Hessian matrix at maximum point H =
∇~w∇~w log P (T |~w,X )|~w=~wML

.
3: Make eigenvalues decomposition of Hessian H =
QT ΛQ, Λ = diag(−h1, . . . ,−hM ) and calculate
~uML = Q~wML.
4:
for i = 1 to M do

if hiu
2
ML,i > 1 then

α∗i = hi/(hiu
2
ML,i − 1)

else
α∗i = +∞

end if
end for
5: Find maximum of regularized log-likelihood func-
tion ~wMP = arg max

~w
log P (T |X , ~w)P (Q~w|~α∗).

output Decision rule for classification of new ob-
ject ~x: f(~x) = sign

(∑M
i=1 wMP,iφi(~x)

)

It should be noted, however, that the weights of irrel-
evant basis functions φi(~x) only tend to zero with αi

going to infinity. On the contrary the use of Laplace
priors makes some weights equal exactly zero. But the
approximation of evidence becomes then intractable
problem since subintegral function is no longer smooth
and should be decomposed to 2M parts to be esti-
mated.

3. Proposed approach

Without loss of generality hereinafter we assume like-
lihood function (4) to be the product of sigmoids that
is used in RVM. Hence log-likelihood can be written
as

L(T |X , ~w, ~α) = −
n∑

i=1

log(1 + exp(−tiy(~xi, ~w))). (5)

The main idea of the proposed approach is to approxi-
mate likelihood function with a Gaussian, treat eigen-
vectors of its Hessian matrix as new axes and make reg-
ularization as in usual sparse Bayesian learning along
these new axes1. After such approximation of likeli-

1Quite similar “diagonalizing trick” for constructing
Bayesian formulations of sparse kernel methods is given
in (Cawley & Talbot, 2005).
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Figure 1. Behaviour of one-dimensional integral
fG

i (hi, uML,i, αi) depending on hi and uML,i in case
of Gaussian prior. Function fG

i is multiplied by exponent
just for normalizing reason (both curves have the same
limit).

hood function evidence (2) can be written as:

E(~α) =
∫

W(α)

P (T |X , ~w, ~α)P (~w|~α)d~w ≈

P (T |X , ~µ, ~α)
∫

W(α)

exp
(

1
2
(~w − ~µ)T H(~w − ~µ)

)

P (~w|~α)d~w,

where ~µ and (−H)−1 are the mean and the covariance
matrix of the Gaussian with which we approximate
likelihood. Hereinafter we will use Laplace (or saddle-
point) approximation of likelihood that yields

~µ = ~wML = arg max
~w

P (T |X , ~w, ~α), (6)

H = ∇~w∇~w log P (T |X , ~w, ~α)|~w=~wML
. (7)

Representing Hessian as H = QT ΛQ, where Λ =
diag(λ1, . . . , λM ), {λi}M

i=1 - Hessian eigenvalues, we
come to new variables ~u = Q~w. Since log-likelihood
function (5) is concave, Hessian H is non-positively
defined and all eigenvalues {λi}M

i=1 are non-positive.
Denote hi = −λi ≥ 0. We propose to introduce inde-
pendent regularization with respect to new variables
~u. This means that prior function can be written as

P (~u|~α) =
M∏

i=1

P (ui|αi).
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Algorithm 2 Laplacian REVM (LREVM)
input Training data (X , T ) = {~xi, ti}n

i=1, ~xi ∈
Rd, ti ∈ {−1, 1}, a set of basis functions {φi(~x)}M

i=1.
1-3: The same as in Algorithm 1.
4:
for i = 1 to M do

Find maximum of (13) using one-dimensional op-
timization procedure:
α∗i = arg max

αi

fL
i (hi, uML,i, αi)

end for
5: Find maximum of regularized log-likelihood func-
tion with respect to ~u:
~uMP = arg max

~u
log P (T |X , QT ~u)P (~u|~α∗)

under constraints uML,iui ≥ 0 for all i.
6: Calculate the weights ~wMP = QT ~uMP .

output Decision rule for classification of new ob-
ject ~x: f(~x) = sign

(∑M
i=1 wMP,iφi(~x)

)

The main goal of such regularization is to present ev-
idence as a product of one-dimensional integrals

E(~α) = P (T |X , ~uML, ~α)
M∏

i=1

fi(hi, uML,i, αi) =

P (T |X , ~uML, ~α)
M∏

i=1

∫
exp

(
−hi

2
(ui − uML,i)2

)

P (ui|αi)dui, (8)

and then perform ARD procedure for setting hyper-
parameters ~α. We call this procedure Relevance Eigen
Vector Machine (REVM). Note that in spite of Laplace
approximation (6)-(7) we may use any other method
which provides the approximation of likelihood or reg-
ularized likelihood with a Gaussian, e.g. variational
bounds (Jaakkola & Jordan, 2000) or expectation
propagation (Minka, 2001). The further regularization
procedure remains unchanged.

In the following we consider two cases of regulariza-
tion: with Gaussian and Laplace prior functions.

3.1. Gaussian prior

Gaussian prior is given by the following expression

P (ui|αi) =
√

αi

2π
exp

(
−αiui

2

2

)
. (9)

Consider one-dimensional integral fi(hi, uML,i, αi) in
expression (8) with prior (9). It can be computed an-
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Figure 2. Behaviour of one-dimensional integral

fL
i (hi, uML,i, αi) exp

„
hiu2

ML,i

2

«
depending on hi and

uML,i in case of Laplace prior. Function fL
i is multiplied

by exponent just for normalizing reason (both curves have
the same limit).

alytically yielding:

fG
i (hi, uML,i, αi) =√

αi

2π

∫
exp

(
−hi

2
(ui − uML,i)2 − αi

2
u2

i

)
dui =

√
αi

hi + αi
exp

(
−hiαiu

2
ML,i

2(hi + αi)

)
(10)

Depending on hi and uML,i integral (10) has unique
maximum or grows continuously as αi tends to infinity
(see fig. 1). Setting derivative of (10) with respect to
αi to zero, we obtain optimal value of αi:

α∗i =

{
hi

hiu2
ML,i−1

if hiu
2
ML,i > 1

+∞ otherwise
(11)

Analogous equations for training RVM using
coordinate-descend method are obtained in (Tip-
ping & Faul, 2003).

Algorithm 1 presents training procedure for sparse
Bayesian model using Gaussian prior. Note that in
contrast to RVM, where iterative process is needed
for training, in Gaussian REVM (GREVM) optimal ~α
values can be found in one step. Experimental results
(see section 4) show that GREVM is much faster and
produces more sparse solutions comparing to RVM.
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Table 1. Error rates together with standard deviations (in percents).

Data set GREVM LREVM RVM VRVM VGREVM

Bupa 33.33± 3.26 30.67± 1.11 32.41± 2.56 30.78± 2.08 31.88± 0.65

Heart 18.15± 2.05 17.41± 0.79 17.26± 1.67 17.56± 2.72 23.11± 1.75

Hepatitis 14.32± 0.71 19.35± 0.79 20.26± 1.34 13.03± 1.06 17.81± 1.49

Votes 5.56± 0.57 5.93± 0.30 6.44± 2.04 5.61± 0.55 4.92± 0.76

WPBC 23.64± 1.15 23.13± 1.36 23.74± 0.36 24.04± 0.85 23.43± 0.28

Contractions 19.18± 2.21 17.96± 1.37 18.78± 1.85 17.35± 2.04 14.08± 3.18

Laryngeal1 16.81± 0.61 17.46± 1.12 17.46± 0.61 17.37± 0.57 18.31± 2.78

Respiratory 7.06± 1.18 7.53± 1.58 9.41± 2.50 8.24± 1.86 5.88± 1.18

Weaning 15.70± 4.76 14.83± 1.29 16.36± 1.36 13.64± 1.20 13.31± 2.06

Rank 28.00 24.50 36.50 24.00 22.00

Color Place 1 Place 2 Place 3 Place 4 Place 5

Table 2. Training time together with standard deviations (in seconds).

Data set GREVM LREVM RVM VRVM VGREVM

Bupa 138.72± 30.54 19.82± 0.61 64.14± 0.80 62.92± 3.03 310.30± 22.20
Heart 39.93± 5.52 11.64± 0.38 46.07± 0.43 21.47± 0.45 115.56± 2.60
Hepatitis 8.92± 0.35 4.88± 0.14 25.17± 0.37 6.88± 0.33 37.19± 1.03
Votes 123.76± 10.01 31.46± 0.47 87.38± 0.77 82.09± 3.57 433.28± 14.60
WPBC 19.67± 0.78 7.47± 0.14 33.06± 0.17 16.30± 0.52 89.72± 3.30
Contractions 7.49± 0.65 2.99± 0.05 16.10± 0.06 3.80± 0.27 22.26± 0.57
Laryngeal1 24.16± 4.04 8.73± 0.37 36.33± 0.54 18.59± 0.85 100.47± 4.30
Respiratory 4.51± 0.22 2.44± 0.03 13.75± 0.15 2.45± 0.05 14.93± 0.09
Weaning 53.16± 1.29 14.14± 0.18 53.17± 0.21 32.48± 0.87 177.16± 4.88

3.2. Laplace prior

Laplace prior function can be written as

P (ui|αi) =
αi

4
exp

(
−αi|ui|

2

)
. (12)

Substituting (12) to (8) one-dimensional integral be-
comes

fL
i (hi, uML,i, αi) =

αi

4

∫
exp

(
−hi

2
(ui − uML,i)2 − αi

2
|ui|

)
dui =

αi

4

√
π

2hi
×

exp

(
−hiu

2
ML,i

2

)[
erfcx

(√
hi

2

(
αi

2hi
− uML,i

))
+

erfcx

(√
hi

2

(
αi

2hi
+ uML,i

))]
, (13)

where erfcx(x) = 2√
π

exp(x2)
∫ +∞

x
exp

(−t2
)
dt - the

scaled complementary error function2. See Ap-
pendix A for further considerations of stable cal-
culation of expression (13). Last equation defines
unimodal function with respect to αi (see fig. 2)
and optimal value can be found efficiently using
one-dimensional optimization methods. Algorithm
2 presents the training procedure for the case of
Laplace prior. Similar to GREVM in Laplace REVM
(LREVM) optimization of ~α values can be done in one
step thus speeding up training procedure. However,
the last step of the algorithm LREVM – optimization
of regularized log-likelihood function – becomes non-
trivial as this function is non-smooth at the points
where at least one of the weights equals zero. How-
ever taking into account the fact that the point ~uMP

is located within the same hyperoctant (with respect
to ~u variable) as the point ~uML we may reduce the

2which is implemented, e.g. in MATLAB
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Table 3. Rate of non-zero parameters together with standard deviations

Data set #Obj./2 GREVM LREVM RVM VRVM VGREVM

Bupa 172 23.10± 14.06 8.20± 1.44 5.80± 0.97 172.50± 0.00 17.20± 1.35
Heart 135 12.10± 4.02 9.00± 0.94 6.00± 1.06 135.00± 0.00 86.60± 13.53
Hepatitis 77 10.20± 2.68 4.60± 1.92 3.10± 1.08 77.50± 0.00 39.40± 17.26
Votes 217 14.60± 3.66 6.60± 1.14 4.70± 0.57 217.50± 0.00 58.70± 21.76
WPBC 99 20.80± 2.49 2.20± 1.04 2.40± 1.39 99.00± 0.00 27.00± 22.84
Contractions 49 14.50± 12.34 3.30± 1.35 2.30± 0.76 49.00± 0.00 34.20± 3.35
Laryngeal1 106 7.20± 1.79 3.90± 1.39 1.90± 0.55 106.40± 0.22 57.10± 22.58
Respiratory 42 5.70± 1.25 2.50± 0.61 1.60± 0.42 42.50± 0.00 22.40± 1.71
Weaning 151 12.90± 4.22 10.10± 2.07 6.80± 1.57 151.00± 0.00 120.20± 10.22

problem to an optimization of smooth function under
constraints which define the borders of hyperoctant
containing the point ~uML.

4. Experiments

In this section we compared original RVM with
GREVM and LREVM measuring their error rates,
training time and obtained sparsity (for REVM meth-
ods sparsity means number of non-zero values in ~uMP )
on a set of data taken from UCI repository (New-
man et al., 1998) and Pattern Recognition Research
Group at University of Wales website3. We used
known algorithm proposed by Tipping and Faul for
training RVM (Tipping & Faul, 2003). Also we added
variational variants for both RVM and GREVM de-
noted by VRVM and VGREVM respectively. For
each data set nominal features were transformed into
a set of binary ones, unknown values were changed
to mean values for each feature and then each sample
was normalized in a way that each feature had zero
mean and unit variance. In all classifiers being com-
pared number of basis functions M = n + 1, φi(~x) =
exp(−‖~x − ~xi‖/(2σ2)), i = 1, . . . , n and φn+1(~x) ≡ 1.
An optimal value of width σ was chosen from the set
{0.01, 0.1, 0.3, 0.6, 1, 2, 3, 5, 7, 10} using 5x2-fold cross
validation strategy (Dietterich, 1998). For each data
set error rates, training time and sparsity were mea-
sured using 5x2-fold cross validation strategy as well.
Tables 1, 2 and 3 report about experimental results.
Rank was calculated in a usual way: for each data set
the winner gets one point, the second winner - two
points and so on, the loser gets five points, and then
points are summed for all data sets.

These results allow us to make the following conclu-
sions. All algorithms show comparable performance

3http://www.informatics.bangor.ac.uk/∼kuncheva/
activities/patrec1.html

in terms of error rates. However, the rate of non-
zero parameters in GREVM and especially LREVM
is significantly less than corresponding value in RVM.
Note however that in REVM the number of non-zero
parameters corresponds to eigenvectors (or degrees of
freedom) and hence the obtained sparsity is implicit.
All the original weights ~wMP demanded to classify new
objects generally differ from zero. So this approach is
not applicable if one needs to select a subset of relevant
features or training objects.

GREVM seems to be faster than RVM as optimiza-
tion of regularization coefficients ~α in GREVM re-
quires only one step comparing to iterative process
in RVM. LREVM is faster than RVM for datasets
with many objects and slower for other datasets. On
the one hand, LREVM benefits in training time since
it has one-step optimization of regularization coeffi-
cients. On the other hand LREVM requires M one-
dimensional optimizations for estimation of ~α as un-
like Gaussian prior case here we cannot get explicit
equations, and additional constrained optimization for
finding ~uMP .

Variational approximation requires significantly more
time for training. In VGREVM we first find Gaussian
variational approximation of an unregularized likeli-
hood by minimizing KL(N (~µ,−H−1)‖P (T |X , ~w, ~α)).
Then we regularize eigenvectors of H just as in case of
Laplace approximation (6)-(7). Note that VGREVM
is even slower than VRVM due to the fact that it takes
quite a long time to approximate unregularized likeli-
hood with a Gaussian. Probably the process can be
accelerated using some small initial regularizer over
‖~w‖. On the other hand the accuracy of variational
methods seems to be a little bit better although fur-
ther careful research is necessary to make any conclu-
sions. The rate of non-zero weights is greater than in
case of Laplace approximation but it’s general prop-
erty of variational approach. Analogously we may use
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variational approximation in LREVM.

5. Conclusions

In the paper we presented a new approach to regu-
larization of classifiers’ training procedure. Our sug-
gestion is to regularize degrees of freedom (expressed
in terms of log-likelihood Hessian eigenvectors) rather
than the weights of classifier. In the weight space it
corresponds to the use of non-diagonal regularizer of
specific form. This regularizer is given by

P (~w|~α) =

√
|A|

√
2π

M
exp

(
−1

2
~wT QT AQ~w

)

for Gaussian prior and

P (~w|~α) =
|A|
4M

exp


−1

2

M∑

i=1

∣∣∣∣∣∣

M∑

j=1

qijwj

∣∣∣∣∣∣




for Laplace prior. Here A = diag(α1, . . . , αM ) and
Q = {qij}M

i,j=1. We claim that the number of the
degrees of freedom is more natural measure of com-
plexity. Besides that such approach provides decom-
position of evidence to the product of one-dimensional
integrals that can be optimized independently. The
latter means that evidence framework can be used ef-
fectively for automatic relevance determination with
different types of priors. This was demonstrated on the
example of Laplace prior whose application to classical
RVM leads to the integral which is too complicated for
direct estimation.

More sparse classifiers in REVM indirectly indicate
that it is more reasonable to assign individual regular-
ization coefficients to the degrees of freedom ~u defined
by the eigenvectors of log-likelihood Hessian rather
than to the weights ~w which may contribute both
to relevant and irrelevant eigenvectors. We suppose
that eigenvalues and directions of eigenvectors present
characteristic features of likelihood function and they
are responsible for generalization ability of a classifier.
If our suggestion is true then the weights of classifier
are secondary with respect to generalization and it is
eigenvectors that are to be regularized directly rather
than the weights.

It seems very promising to consider the regularization
of generalized linear models by using arbitrary non-
negative symmetric regularization matrix R0. The co-
efficients of R0 then can be found by optimizing evi-
dence

R0 = arg max
R

P (T |X , ~w)P (~w|R),

where R = {R ∈ RM×M | RT = R, R ≥ 0} and

P (~w|R) =
√

det(R)
2πM exp

(− 1
2 ~wT R~w

)
. Such matrix can

be found analytically. We consider it as one of the
directions for the future work.
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A. Evidence efficient calculations for
LREVM

Consider calculation of evidence (13) for the case of
Laplace prior. Expression (13) can be written as

C exp

(
−hiu

2
ML,i

2

)
×

[
exp

(
x2

1

)
erfc(x1) + exp

(
x2

2

)
erfc(x2)

]
, (14)

where C is some positive constant, erfc(x) =
2√
π

∫∞
x

exp(−t2)dt – complementary error function

and x1,2 =
√

hi

2

(
αi

2hi
∓ uML,i

)
. For large positive

values of x the product exp(x2)erfc(x) is convenient
to write as scaled complementary error function

erfcx(x) = exp(x2)erfc(x) ≈ 1/(
√

πx).

For large negative values of x it is reasonable to unite
exp(−hiu

2
ML,i/2) and exp(x2) in one expression yield-

ing
exp(−hiu

2
ML,i/2) exp(x2) = exp(y),

where

y1,2 =
α2

i

8hi
∓ αiuML,i

2
.


