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1. Introduction

The information analysis of signals generated by the heart reveals entirely

new opportunities in the assessment of the human health and the disease

diagnosis1. The informational analysis of ECG includes measuring the am-

plitudes and the intervals of cardial cycles, the ECG signal discretization,

and the induction of diagnostic rules2,3. This technology is uniquely po-

sitioned to diagnose dozens of internal organs diseases using a single ECG

record. In this paper we investigate the ways to improve the diagnosis ac-

curacy by means of fuzzy encoding. This type of encoding allows to smooth

noise and to decrease uncertainties in the ECG signal.

2. Discrete and Fuzzy Encoding

The informational analysis of ECG is based on the measurement of the

amplitudes Rn and intervals Tn for each cardial cycle, n = 1, . . . , N .

The sequence R1, . . . , RN represents the amplitudogram, and the sequence

T1, . . . , TN represents the intervalogram of the ECG.
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Discrete Encoding. In successive cardial cycles, the signs of increments

of Rn, Tn and αn = Rn

Tn
contain important information for the diagnosis1,2.

Only 6 combinations of increment signs are possible. They are encoded by

the letters of a 6-character alphabet A = {A, B, C, D, E, F}:

A B C D E F

Rn+1 −Rn + − + − + −

Tn+1 − Tn + − − + + −

αn+1 − αn + + + − − −

Thus, the ECG can be encoded into a sequence of characters from A

called a codegram, S = (s1, . . . , sN−1). Define a frequency pw(S) of a tri-

gram w = (a, b, c) of three symbols a, b, c from A in the codegram S:

pw(S) =
1

N − 3

N−3
∑

n=1

[sn = a][sn+1 = b][sn+2 = c].

Denote by p(S) =
(

pw(S) : w ∈ A3
)

a frequency vector of all |A|3 =

216 trigrams w in the codegram S. The informational analysis of ECG is

based on the observation that each disease has its own diagnostic subset of

trigrams significantly frequent in the presence of the disease1,3.

Fuzzy encoding. There are two reasons to consider a smooth variant of

the discrete encoding. First, ECG may have up to 5% of outliers among

the values Rn, Tn. In discrete encoding each outlier distorts 4 neighboring

trigrams; so, the total number of distorted trigrams may reach 20%. Sec-

ond, equalities Rn = Rn+1, Tn = Tn+1 counts up to 5% of data. In such

cases it is more natural to consider sn as several equiprobable characters.

In a general way we propose to replace each character sn with a prob-

ability distribution qn(s) over A. This distribution depends on Rn, Rn+1,

Tn, Tn+1 values. Then we redefine the frequency of a trigram w = (a, b, c)

as a probability of w averaged over the codegram S:

pw(S) =
1

N − 3

N−3
∑

n=1

qn(a) qn+1(b) qn+2(c).

To estimate how probabilities qn(s) depends on Rn, Rn+1, Tn, Tn+1 we

apply a Monte-Carlo simulations over ECG data set. We simulate a true

amplitude R0
n for each observation Rn from a normal model of measure-

ments with rounding to the nearest integer Rn = roundN (R0
n, σ

2
R), where

N (R0
n, σ

2
R) is a normal random variable with mean R0

n and variance σ2
R.

For intervals Tn we use a similar model with a variance parameter σ2
T .
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Rule induction is a machine learning technique that discovers general

rules of classification from a sample of classified cases. We learn diagnostic

rules for a disease from a two-class sample: healthy persons and ill patients,

each represented by its ECG trigram frequency vector. We use two rule

induction algorithms, both applicable for both discrete and fuzzy encoding.

The first algorithm (A1) sorts the sample by Γ(S) = NS(A,B,E,F)
NS(C,D)

, where

NS(X) is a frequency of symbols X ⊆ A in a codegram S. Then it divides

the range of Γ values into intervals with boundaries 0, 1, 1.4, 2, 3. For each

interval it finds a diagnostic subset of trigrams which contains all trigrams

that co-occurs in the codegrams of ill people and never co-occur in the

codegrams of healthy people. The diagnosis is positive if the codegram of

the person contains the diagnostic subset of the disease.

The second algorithm (A2) sorts the trigrams by their frequency among

ill people. The diagnosis is positive if the codegram contains any βK of the

K most frequent trigrams. Parameters K,β are optimized by a full search.

The sensitivity and the specificity of diagnostic rules are estimated by

a standard t×k-fold cross-validation procedure. A two-class sample of code-

grams is randomly divided into k equi-sized blocks. Each block is used in

turns as a testing sample. All but one blocks are used as a training sam-

ple to learn a classifier. Then a fraction of erratic testing diagnoses for

healthy (E1 = 1− specificity) and for ill (E2 = 1− sensitivity) persons are

calculated. This procedure is repeated t times add the results are averaged.

3. Experiments and Results

In the experiment we use 5000 ECGs, N = 600 cardial cycles each.

198 ECGs were registered from healthy persons, others had reliable di-

agnoses of one or more of 11 diseases: (1) necrosis of the femoral head,

(2) nodular goiter, (3) chronic gastritis, (4) coronary heart disease, (5) can-

cer, (6) hypertension, (7) cholelithiasis, (8) diabetes, (9) benign prostatic

hyperplasia, (10) gastroduodenitis, (11) biliary tract dyskinesia.

Table 1 shows the errors E1, E2 for 11 diseases and two learning algo-

rithms A1, A2 applied after the discrete encoding.

Fig. 1 shows how the error 1
2 (E1 +E2) depends on the variance param-

eters σ = σR = σT of the fuzzy encoding. When σ ≈ 5, the error rate is

reduced in average by 1% compared to the discrete encoding (horizontal

lines). Error rate does not significantly increase up to σ ≈ 10, thus indicat-

ing a satisfactory accuracy of the measurer. The proximity of the training

and testing errors indicates that overfitting is negligible.



March 16, 2014 2:54 WSPC Proceedings - 9in x 6in uvcb14amctm-eng page 4

4

Table 1. Errors E1 (1− specificity) and E2 (1− sensitivity) for 11 diseases, %.

disease: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

cases: 327 750 698 1262 267 1891 277 868 257 321 714

E1(A1) 8.59 33.1 15.2 10.2 7.32 24.3 9.19 10.4 9.80 8.13 28.0
E2(A1) 8.78 11.8 20.4 15.3 28.3 10.6 10.4 20.8 24.0 21.9 14.5

E1(A2) 5.15 8.99 23.8 6.36 14.1 10.0 4.55 10.1 8.33 7.27 15.2
E2(A2) 3.79 9.29 6.63 6.09 14.6 7.69 4.01 6.91 9.03 6.64 9.54
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Fig. 1. The error over σ for cholelithiasis (left) and diabetes (right).

Conclusion. The multidisease diagnostic system based on informational

analysis of ECG signals reaches a high level of average sensitivity (93%) and

specificity (90%) in cross-validation experiments. Fuzzy encoding helps

to improve it by 1% in average. Future research will benefit from more

accurate model selection and advanced machine learning techniques.
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