СПЕЦКУРС

Логический анализ данных в распознавании (Logical data analysis in recognition)

лектор д.ф.-м.н. Елена Всеволодовна Дюкова

Спецкурс посвящён вопросам применения аппарата дискретной математики в задачах интеллектуального анализа данных. Излагаются общие принципы, лежащие в основе логического подхода к задачам машинного обучения. Описываются методы конструирования процедур классификации по прецедентам с использованием понятий теории булевых функций и теории покрытий булевых матриц. Рассматриваются основные модели логических процедур классификации, вопросы сложности их реализации и качества решения прикладных задач.

Спецкурс для бакалавров 2-4 курсов ВМК МГУ им. М.В. Ломоносова.

По спецкурсу издано учебное пособие:

http://www.ccas.ru/frc/papers/djukova03mp.pdf

Лекция 7

Поиск элементарных классификаторов на основе построения покрытий булевой и целочисленной матриц. Связь задач построения покрытий булевой матрицы и преобразования нормальных форм булевой функции

- При реализации логических классификаторов для поиска элементарных классификаторов чаще используются построения, в основе которых лежит поиск покрытий булевой или целочисленной матрицы.
- Пусть L булева матрица. Набор столбцов H матрицы L называется *покрытием*, если каждая строка матрицы L в пересечении хотя бы с одним из столбцов, входящих в H, дает 1. Покрытие называется *неприводимым*, если никакое его собственное подмножество не является покрытием.
- При построении неприводимых покрытий обычно используется следующий *критерий*.

- Утверждение 1. Набор H из r различных столбцов матрицы L является неприводимым покрытием, если выполнены два условия: 1) подматрица L^H матрицы L образованная столбцами набора H, не содержит строк вида (0, 0, ..., 0); 2) L^H содержит каждую из строк вида каждую из строк вида (1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1), т.е. L^H содержит единичную подматрицу порядка r.
- Первое условие называется условием покрываемости, а второе условием совместимости.
- Как возникают задачи построения покрытий и неприводимых покрытий при построении (тупиковых) тестов и (тупиковых) представительных наборов?

- Материал обучения обычно представляется в виде таблицы T с n столбцами (таблицы обучения), в которой столбец с номером j соответствует признаку x_j , а каждая строка есть набор значений признаков, описывающих один из обучающих объектов. Для нахождения искомого множества элементарных классификаторов строится специальная булева матрица (матрица сравнения таблицы T). Обозначим её L_T . Каждая строка этой матрицы образуется в результате сравнения пары строк таблицы T, описывающих объекты из разных классов. При этом в столбце матрицы L_T с номером J ставится I, если сравниваемые строки различаются в разряде с номером J, и I0 в противном случае.
- Обозначим через $L_T^{(i)}$, i=1,...,m, подматрицу матрицы L_T , которая образована сравнением обучающего объекта S_i со всеми обучающими объектами, не принадлежащими тому же классу, что и объект S_i .

- Очевидными являются следующие два утверждения.
- Утверждение 2. Набор признаков $\{x_{j_1}, ..., x_{j_r}\}$ является (тупиковым) тестом тогда и только тогда, когда набор столбцов матрицы L_T с номерами $j_1, ..., j_r$ является (неприводимым) покрытием.
- Утверждение 3. Эл.кл. $(\sigma, \{x_{j_1}, ..., x_{j_r}\})$, является (тупиковым) представительным набором для класса K тогда и только тогда, когда $B(\sigma, S_i, \{x_{j_1}, ..., x_{j_r}\}) = 1$ для некоторого обучающего объекта S_i из K и набор столбцов матрицы $L_T^{(i)}$ с номерами $j_1, ..., j_r$ является (неприводимым) покрытием.
- Задача построения неприводимых покрытий булевой матрицы \boldsymbol{L} размера $\boldsymbol{u} \times \boldsymbol{n}$ может быть сформулирована как задача преобразования КНФ монотонной булевой функции в сокращенную ДНФ.

- Действительно, строке с номером i поставим в соответствие дизьюнкцию $D_i = x_{p_1} \lor \cdots \lor x_{p_q}$, где p_1, \ldots, p_q номера тех столбцов, которые в пересечении с этой строкой дают 1. Пусть f-монотонная булева функция реализуемая КНФ $D_1 \& \ldots \& D_u$.
- Пользуясь утверждением 2 из лекции 5 нетрудно доказать
- Утверждение 4. ЭК $x_{j_1} \dots x_{j_r}$ является допустимой для f тогда и только тогда, когда набор столбцов H матрицы L с номерами j_1, \dots, j_r является покрытием.
- Пользуясь утверждением 4 из лекции 5 нетрудно доказать
- Утверждение 5. ЭК $x_{j_1} \dots x_{j_r}$ является неприводимой для f тогда и только тогда, когда набор столбцов матрицы L с номерами j_1, \dots, j_r содержит единичную подматрицу порядка r.

- Из утверждений 4 и 5 следует
- Утверждение 6. ЭК $x_{j_1} \dots x_{j_r}$ является максимальной для f тогда и только тогда, когда набор столбцов матрицы L с номерами j_1, \dots, j_r является неприводимым покрытием.
- Из последних трех утверждений следует, что алгоритмы построения неприводимых покрытий булевой матрицы можно применять построения максимальных конъюнкций монотонной булевой функции, заданной КНФ, и наоборот. В теории алгоритмической сложности рассматриваемая задача преобразования нормальных форм монотонной булевой функции называется монотонной дуализацией и относится к числу труднорешаемых дискретных задач. О существующих подходах к её решению будет рассказано в следующей лекции. В силу вычислительной сложности монотонной дуализации на практике отказываются от поиска всех тупиковых тестов и тупиковых представительных наборов. В основном используются модели с ограничением на длину эл.кл. и стохастические алгоритмы, в которых строится достаточно представительная выборка из искомого множества элементарных классификаторов.

- Можно избежать построения вспомогательной булевой матрицы L_T , если ввести понятие покрытия более общего вида.
- Действительно, пусть L целочисленная матрица размера $u \times n$ с элементами из $\{0,1,...,k-1\}, k \geq 2; E_k^r, r \leq n$, множество наборов вида $\sigma = (\sigma_1, ..., \sigma_r)$, где $\sigma_i \in \{0,1,...,k-1\}$.
- Пусть далее $\sigma \in E_k^r$, $\sigma = (\sigma_1, ..., \sigma_r)$.
- Набор H из r различных столбцов матрицы L называется σ *покрытием*, если в подматрице L^H матрицы L, образованной столбцами набора H, нет строки $(\sigma_1, ..., \sigma_r)$. Набор H из r различных столбцов матрицы L, являющийся σ покрытием, называется *тупиковым* σ *покрытием*, если L^H содержит подматрицу, имеющую с точностью до перестановки строк вид

$$\begin{pmatrix} \beta_1 & \sigma_2 & \sigma_3 & ... & \sigma_{r-1} & \sigma_r \\ \sigma_1 & \beta_2 & \sigma_3 & ... & \sigma_{r-1} & \sigma_r \\ & ... & & & & \\ \sigma_1 & \sigma_2 & \sigma_3 & ... & \sigma_{r-1} & \beta_r \end{pmatrix},$$

где $m{\beta}_p
eq m{\sigma}_p$ при $m{p} = m{1}, m{2}, \dots, m{r}$. Такая подматрица называется $m{\sigma}$ - $no\partial$ матрицей.

- Если k = 2 и $\sigma = (0, ..., 0)$, то понятие (тупикового) σ -покрытия совпадает с понятием (неприводимого) покрытия. Аналогом единичной подматрицы в этом случае является σ -подматрица.
- Таблицу обучения T можно рассматривать как пару матриц L_1 и L_2 , где L_1 матрица, состоящая из описаний обучающих объектов из класса K, L_2 матрица, состоящая из описаний остальных обучающих объектов. Тогда, очевидно, эл.кл. $(\sigma, \{x_{j_1}, ..., x_{j_r}\})$, $\sigma = (\sigma_1, ..., \sigma_r)$, является (тупиковым) представительным набором для класса K, если набор столбцов матрицы L_1 с номерами $j_1, ..., j_r$ не является $(\sigma_1, ..., \sigma_r)$ покрытием, а набор столбцов матрицы L_2 с номерами $j_1, ..., j_r$ является (тупиковым) $(\sigma_1, ..., \sigma_r)$ покрытием.
- Нетрудно видеть, что эл.кл. $(\sigma, \{x_{j_1}, ..., x_{j_r}\})$, $\sigma = (\sigma_1, ..., \sigma_r)$, является (тупиковым) покрытием класса K, если набор столбцов матрицы L_1 с номерами $j_1, ..., j_r$ является (тупиковым) $(\sigma_1, ..., \sigma_r)$ -покрытием.

- Нетрудно также видеть, что эл.кл. вида $(\sigma, \{x_{j_1}, ..., x_{j_r}\})$, $\sigma = (\sigma_1, ..., \sigma_r)$, является (тупиковым) антипредставительным набором для класса K, если набор столбцов матрицы L_2 с номерами $j_1, ..., j_r$ не является $(\sigma_1, ..., \sigma_r)$ покрытием, а набор столбцов матрицы L_1 с номерами $j_1, ..., j_r$ является (тупиковым) $(\sigma_1, ..., \sigma_r)$ -покрытием.
- Через $R(\sigma)$ обозначим множество наборов ($\beta_1, ..., \beta_r$) в E_k^r таких, что $\beta_j \neq \sigma_j$ при j=1,2,...,r. Набор столбцов H матрицы L назовем $R(\sigma)$ покрытием, если в подматрице L^H матрицы L, образованной столбцами набора H, нет ни одной строки из $R(\sigma)$. Набор столбцов H матрицы L, являющийся $R(\sigma)$ -покрытием, назовем тупиковым $R(\sigma)$ -покрытием, если L^H содержит подматрицу, имеющую с точностью до перестановки строк вид

$$\begin{pmatrix} \sigma_1 & \beta_2 & \beta_3 & \dots & \beta_{r-1} & \beta_r \\ \beta_1 & \sigma_2 & \beta_3 & \dots & \beta_{r-1} & \beta_r \\ & & & \dots & & \\ \beta_1 & \beta_2 & \beta_3 & \dots & \beta_{r-1} & \sigma_r \end{pmatrix},$$

где $m{\beta}_p
eq m{\sigma}_p$ при $m{p} = m{1}, m{2}, ..., m{r}$. Такая подматрица называется $m{R}(m{\sigma})$ - nodматрицей.

- Если k=2 и $\sigma=(1,...,1)$, то понятие (тупикового) $R(\sigma)$ -покрытия совпадает с понятием (неприводимого) покрытия. Аналогом единичной подматрицы является $R(\sigma)$ -подматрица.
- Пусть далее L булева матрица размера $u \times n$, $\sigma \in E_2^r$.
- Через $C(L, \sigma)$ и $B(L, \sigma)$ обозначим соответственно совокупность всех σ -покрытий и всех тупиковых σ -покрытий матрицы L . Положим
- $C(L) = \bigcup_{r=1}^n \bigcup_{\sigma \in E_2^r} C(L, \sigma), B(L) = \bigcup_{r=1}^n \bigcup_{\sigma \in E_2^r} B(L, \sigma).$
- Связь между задачами построения множеств C(L), B(L) матрицы L и задачей преобразования нормальных форм булевой функции устанавливается следующим образом.
- Пусть $(\sigma_{i1}, ..., \sigma_{in})$ строка матрицы L с номером $i, i \in \{1, 2, ..., u\}$. Этой строке ставится в соответствие дизьюнкция $D_i^{(1)} = x_1^{\overline{\sigma_{i1}}} \lor \cdots \lor x_n^{\overline{\sigma_{in}}}$

- Пусть F_1 булева функция, реализуемая КНФ $D_1^{(1)}$ & ... & $D_u^{(1)}$. Используя утверждения 2 и 4 из лекции 5 нетрудно доказать приведенные ниже утверждения 7, 8, из которых сразу следует утверждение 9.
- Утверждение 7. ЭК $x_{j_1}^{\sigma_1}$ & ... & $x_{j_r}^{\sigma_r}$ является допустимой для F_1 тогда и только тогда, когда набор столбцов матрицы L с номерами $j_1, ..., j_r$ является $(\sigma_1, ..., \sigma_r)$ -покрытием.
- Утверждение 8. ЭК $x_{j_1}^{\sigma_1}$ & ... & $x_{j_r}^{\sigma_r}$ является неприводимой для F_1 тогда и только тогда, когда набор столбцов матрицы L с номерами $j_1, ..., j_r$ содержит $(\sigma_1, ..., \sigma_r)$ -подматрицу.
- Утверждение 9. ЭК $x_{j_1}^{\sigma_1}$ & ... & $x_{j_r}^{\sigma_r}$ является максимальной для F_1 тогда и только тогда, когда набор столбцов матрицы L с номерами $j_1, ..., j_r$ является тупиковым $(\sigma_1, ..., \sigma_r)$ -покрытием.

- Если строке матрицы L с номером $i, i \in \{1, 2, ..., u\}$, поставить в соответствие дизьюнкцию $D_i^{(2)} = x_1^{\sigma_{i1}} \lor \cdots \lor x_n^{\sigma_{in}}$ и рассмотреть булеву функцию F_2 , реализуемую КНФ $D_1^{(2)}$ & ... & $D_u^{(2)}$, то задачи построения допустимых и максимальны конъюнкций функции F_2 могут быть сформулированы соответственно как задачи построения $R(\sigma)$ -покрытий и тупиковых $R(\sigma)$ -покрытий матрицы L.
- Таким образом, алгоритмы построения покрытий общего вида булевой матрицы можно применять для построения ДНФ булевой функции, заданной КНФ, и наоборот. Аналогичное утверждение имеет место и для целочисленной матрицы. Алгоритмы построения покрытий общего вида целочисленной матрицы можно применять для ДНФ двузначной логической функции k -значной логики, заданной КНФ.

УПРАЖНЕНИЯ

- Пусть две строки булевой матрицы L имеют вид $(b_1, ..., b_n)$ и $(c_1, ..., c_n)$, где $c_j \geq b_j$ при j = 1, 2, ..., n. Будем говорить, что вторая строка охватывает первую. Показать, что при удалении охватывающих строк из матрицы L множество её покрытий не меняется.
- 2. Пусть булева F функция задана КНФ $(x_1 \lor x_2)(x_2 \lor x_3)(x_1 \lor x_3)$. Построить сокращенную ДНФ функции F сведением задачи к задаче построения неприводимых покрытий булевой матрицы.
- 3. Пусть булева F функция задана множеством наборов, на которых она равна $\mathbf{0}$, а именно, $N_{\overline{F}} = \{(\mathbf{1}, \mathbf{1}, \mathbf{1}), (\mathbf{0}, \mathbf{1}, \mathbf{1}), (\mathbf{1}, \mathbf{0}, \mathbf{1})\}$. Построить сокращенную ДНФ функции F двумя способами: а) сведением к задаче построения тупиковых σ -покрытий булевой матрицы; б) сведением к задаче построения тупиковых $R(\sigma)$ -покрытий булевой матрицы.
- 4. Доказать утверждения 4 9.