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Section 1

A brief introduction to quantum mechanics
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Motivation

Consider the following experiment

Experiment

S is a source of electrons;

B is a screen with two holes in it;

C is another screen, with detectors covering it's surface.
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Motivation

Now consider the plot of the probability of the electron to reach the screen

C at the height x as a function of x .

Experiment shows, that

P 6= P1 + P2,

where P is the probability distribution with both holes open (subplot a),

and Pi is the probability distribution with only i-th hole open (subplots b

and c).
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State space

Postulate 1

Associated to any isolated physical system is a complex Hilbert space

known as the state space of the system. The system is completely described

by its state vector, which is a unit vector in the system's state space.

We will denote the column vector a from the state space as |a〉 and the

corresponding row vector as 〈a|. We will also denote the inner product of a
and b as 〈a||b〉 = 〈a|b〉.
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Qubit

Qubit

The simplest quantum system is a qubit. It has a 2-dimensional state space

H with orthonormal basis vectors |0〉 and |1〉.

The state of a qubit can be written in the form

|ψ〉 = a|0〉+ b|1〉, where a, b ∈ C

As a state vector is a unit vector, we have

〈ψ|ψ〉 = |a|2 + |b|2 = 1.
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Evolution

Postulate 2

The evolution of a closed quantum system is described by a unitary

transformation. That is, the state |ψ〉 of the system at time t1 is related to

the state |ψ′〉 of the system at time t2 by a unitary operator U which

depends only on the times t1 and t2.

Postulate 2'

The evolution of the state of a closed quantum system is described by the

Schr�odinger equation,

i}
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where } is the Planks constant and H is a hermitian operator (that might

depend on time) known as the Hamiltonian of a closed system.
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Evolution

Consider the following example of the quantum system evolution.

Hadamard gate

The matrix representation of the Hadamard gate is the following

H =
1√
2

[
1 1

1 −1

]
.

It's easy to see, that

H|0〉 = (|0〉+ |1〉)/
√
2,

H|1〉 = (|0〉 − |1〉)/
√
2.
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Measurements

Postulate 3

Quantum measurements are described by a collection {Mm} of
measurment operators, acting on the state space of the system being

measured. The index m referes to the measurement outcomes. If the

system is in the state |ψ〉 immediately before the measurement then the

probability that m occurs is

p(m) = 〈ψ|M∗mMm|ψ〉,

and the state after the measurement is

Mm|ψ〉√
〈ψ|M∗mMm|ψ〉

.
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Measurements

As an example, consider the measurement of a qubit in the computational

basis.

The measurement of a qubit in the computational basis

This is a measurement on a single qubit with two outcomes, de�ned by the

operators

M0 = |0〉〈0|,

M1 = |1〉〈1|.

If the state of the system before the measurement is |ψ〉 = a|0〉+ b|1〉,
then the probability to obtain a 0 outcome, for example, is

〈ψ|M∗0M0|ψ〉 = 〈ψ|M0|ψ〉 = |a|2.
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Composite systems

Postulate 4

The state space of a composite system is a tensor product of the state

spaces of the component physical systems. Moreover, if we have systems

numbered 1 to n, and i-th system is in the state |ψi 〉, then the joint state

of the total system is |ψ1〉 ⊗ . . .⊗ |ψn〉.

State space of a 2 qubit system

For example, for two qubits the state vector is of the form

|ψ〉 = a|00〉+ b|01〉+ c |10〉+ d |11〉,

where |a|2 + |b|2 + |c |2 + |d |2 = 1.
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Entagled states

Entagled state is a quantum state |Ψ〉 of S1, S2 system that can't be

represented as a tensor product of any states |ΨS1〉 and |ΨS2〉 from S1 and

S2 state spaces respectively.

|ΨS1〉 ⊗ |ΨS2〉 6= |Ψ〉

Entaglement example

Consider a two-qubit state |φ〉 = |00〉+|11〉√
2

. It is easy to show that this is an

entagled state.
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Section 2

A brief introduction to quantum computations
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Quantum computation

Main steps of qunatum computation:

1 Initialization quantum states.

2 Performance of unitary operations on some subsets of qubits.

3 State measurement of the interesting set of qubits.

Almost always correct outcome of computations is obtained with some

probability or algorithm aims to estimate some probability.
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Quantum computer

Quantum computer includes two parts.

Quantum part:
I Initialize quantum memory.
I Perform an unitary operation on some subset of qubits.
I Make a measurement of a quantum state.

Classical part:
I Choose the current unitary operation and a subset of qubits to perform

it on.
I Controll the computation process.
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Motivation of using quantum computers

State of a set of N qubits is a superposition of 2N possible states.

The result of a measurement is one of 2N states, which is obtained

with some probability.

So the quantum memory is principially more powerfull than classical

memory.

One quantum operation makes much more work than one classiscal

computer operation.

Main source of speed-up is the existence of entagled states.
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Example of quantum algorithm
SWAP-test

Task: determine are two quantum states |φ〉 and |ψ〉 di�erent or equal.
Solution:

1 Add an ancillary qubit in the state |0〉.
2 Apply the Hadamard transform to the ancillary qubit.

H =

[
1√
2

1√
2

1√
2
− 1√

2

]
3 Perform the controlled swap procedure (CSWAP).

4 Apply another Hadamard transform to the ancillary qubit.

5 Measure state of the ancillary qubit. If |φ〉 = |ψ〉 then |0〉 is obtained
with probability 1.
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Example of quantum algorithm
SWAP-test

The evolution through algorithm steps:

|0〉|φ〉|ψ〉 H−→ |0〉+ |1〉√
2
|φ〉|ψ〉 CSWAP−→ |0〉|φ〉|ψ〉+ |1〉|ψ〉|φ〉√

2

H−→

|0〉 [|φ〉|ψ〉+ |ψ〉|φ〉] + |1〉 [|φ〉|ψ〉 − |ψ〉|φ〉]
2

The probability of passing the test:

P =
1

4
(〈φ|〈ψ|+ 〈ψ|〈φ|)(|φ〉|ψ〉+ |ψ〉|φ〉) =

1 + | 〈φ|ψ〉 |2

2
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Famous quantum algorithms

Grover's search algorithm

Task: Find a solution of a euqation f (x) = 1, where x ∈ {0, 1}n, and f (x)
is a boolean function.

Time: O(
√
2N)

Memory: O(N)

Shor's factorization algorithm

Task: Factorization of number N.

Time: O([logN]3) Goodbye RSA!

Memory: O(logN)

Quantum algorithm for linear systems of equations

Task: Solving a linear system of equations with N variables.

Assumption: The system is sparse and has a low conditional number κ.
Time: O(κ logN) (versus classical O(κN))
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Why don't we have a quantum computer

Theory of quantum computations is quite well developed and it have shown

possible huge potential of quantum computers compared to classical

computers.

But modern implementations of quantum computer are strongly restricted

and are used only for specialized tasks. Building a full quantum computer

as a real physical device is a fundamental problem of 21th century physics.
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Quantum computations and machine learning

Motivation of quantum machine learning:

There is a challenge that machine learning with rapidly growing

�big data� could become intractable for classical computers.

Manipulation with high-dimensional vector is a core routine for

machine learnig algorithms.

Quantum computers appears to be good at such manipulations.

Vector storing

Stroring a representation of a 2N -dimensional unit vector require only N
qubits. And such representations could be constructed in O(N) time.

Quantum machine learning may provide an exponential speed-up over

known algorithms for problems involving evaluating distances and

inner products between large vectors.
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Section 3

Quantum algorithms for supervised and unsupervised

machine learning
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Data preparation and pre-processing

We assume, that the data sets that consist of vectors and collections of

vectors are originally stored in qRAM.

Then constructing the log2N qubit quantum state |v〉 = |v |−1/2v takes

O(log2N) steps.
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Supervised cluster assignment problem

Consider the task of assigning a post-processed vector u ∈ Rn to one of

two sets V , W given M representatives of each classes.

A common method for such an assignment is evaluating the distances∣∣∣∣∣∣u − 1

M

M∑
j=1

vj

∣∣∣∣∣∣
and ∣∣∣∣∣∣u − 1

M

M∑
j=1

wj

∣∣∣∣∣∣ ,
and assign the vector to the class, for which this distance is smaller.
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Supervised cluster assignment

distance determining algorithm

1 Create an ancillary variable with M + 1 states.
2 Construct the state

|ψ〉 =
1√
2

(|0〉|u〉+
1√
M

M∑
j=1

|j〉|vj〉).

3 Use the swap-test to determine, weather the ancillary variable is in the

state

|ϕ〉 =
1√
Z

(|u||0〉 − 1√
M

M∑
j=1

|vj ||j〉),

where Z = |u|2 + (1/M)
M∑
j=1

|vj |2.

The probability of success in this measurement is equal to the distance

|u − (1/M)
M∑
j=1

vj |2 divided by Z . Thus, performing this measurement

several times we can estimate the distance.
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Adiabatic quantum computations

As already been mentioned, the time evolution of a quantum system is

described by the Schr�odinger equation:

i}
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where H(t) is the Hamiltonian of the system. A Hamiltonian is described

by a hermitian matrix, whose eigenvectors represent the eigenstates of the

system. The corresponding eigenvalues refer to the di�erent energies of the

eigenstates. The state with the lowest energy is called the ground state of

the system.

Quantum adiabatic theorem

A physical system that is initially in its ground state, tends to stay in this

lowest energy state, provided that the Hamiltonian of the system is

changed 'slowly enough'.
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Adiabatic quantum computations

Consider the following algorithm for minimization an objective function f .

Adiabatic quantum computations framework

1 De�ne the Hamiltonian H0 so that it's eigenstates are easy to

compute. Set the system to the ground state of H0.

2 De�ne the �nal Hamiltonian as

Hf =
∑

z∈{0,1}n
f (z)|z〉〈z |.

3 Gradually transform the Hamiltonian of the system from H0 to Hf .

4 The �nal state of the system is the minimizer of the objective function.
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Unsupervised quantum learning

Consider the task of assigning M vectors to k clusters in a way, that

minimizes the average distance to the centroid of the cluster.

The standard classical algorithm for doing this is the Lloyd's algorithm:

Lloyd algorithm

1 Choose k initial centroids.

2 Assign each vector to the cluster with the closest mean.

3 Recalculate the centroids of the clusters.

4 Repeat steps (2�3) until a stationary assignment is attained.
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Unsupervised quantum learning

The quantum Lloyd algorithm

1 Choose k initial centroids i1, . . . , ik .
2 Using the adiabatic quantum computations �nd the re-clustering that

minimizes the distances from each point to the corresponding

centroid. The result is a state |ψ1〉 = 1√
M

∑
c,j∈c
|c〉|j〉

3 Construct multiple copies of this state and perform projective

measurements of the |c〉. Thus we obtain individual cluster states

|ϕc
1
〉 = 1√

M

∑
j∈c
|j〉.

4 Use the adiabatic quantum computations to �nd the re-clustering that

minimizes the distances from each point to the corresponding centroid

of the clasters, obtained on the previous iteration. The result is a state

|ψi 〉.
5 Construct multiple copies of the state |ψi 〉 and perform projective

measurements of the |c〉. Thus we obtain individual cluster states

|ϕc
i 〉 = 1√

M

∑
j∈c
|j〉.

6 Repeat the steps (4 � 5) until two successive states |ψi 〉 and |ψi+1〉
coincide, which can be veri�ed using the swap test.
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Unsupervised quantum learning

The output of the algorithm is a state

|χ〉 =
1√
M

∑
j

|cj〉|j〉

that contains the labels j of vectors, correlated with their cluster

assignments cj . Sampling from this state we obtain a statistical picture of

the clustering.
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Computational complexity estimations

For the vector assignment algorithm the computational complexity estimate

is O(logMN).

For the quantum Lloyd algorithm the computational complexity of

constructing the state |χ〉 estimation is O(k log kMN).
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Section 4

Algorithm implementation and experiments
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Experiments: task description

Task: Classi�cation of N-dimensional vectors (where N = 2, 4, 8) to two

classes with one reference vector in each class.

Notation:

Classes are labeled as A and B .

~vA and ~vB are reference vectors.

~u is the new sample vector.

Classi�cation of the new sample is done by comparing distances:

DA = |~u − ~vA|, DB = |~u − ~vB |
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Experiments: algorithm

Compting distance |~u − ~v |:
1 Represent vectors with quantum states:

~u = |u||u〉 , ~v = |v ||v〉

2 Add an ancillary qubit and create an entagled state:

|φ〉 = (|0〉anc |u〉new + |1〉anc |v〉ref )/
√
2

3 Make a measurement on the ancillary qubit, projecting it onto the

state:

|ψ〉 = (|u||0〉 − |v ||1〉)/
√
|u|2 + |v |2

4 Estimate the succes probability of measurement p by repeated

measurements.

5 Calculate |~u − ~v | using p.
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Experiments: algorithm

The distance between ~u and ~v can be directly calculated from p:

|~u − ~v | =
√
2p(|u|2 + |v |2)

Also the inner product between |u〉 and |v〉 can be obtained:

〈u|v〉 = (0.5− p)(|u|2 + |v |2)/(|u||v |)
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Experiments: setup
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Figure: Experimental setup with 4 photonic qubits
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Experiments: results
2D classi�cation

(a)

(b)

Experiment for 2D vectors:

Only 2 of 100 samples are

misclassi�ed.

Errors occured at vectors that

are close to boundary where

absolute error of probability

estimation is close to |DA−DB |.
Estimation of probability done

by 10 000 repeated

measurements for each vector.

Time needed for processing one

vector is 1 sec.
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Experiments: results
4D classi�cation

DA�DB

TheoryExp:
Group Correct?

1 (2.00, 0.00, 0.00, 0.00) �1.45 �0.93 A �

2 (0.00, 0.00, 0.00, 2.00) 0.82 0.50 B �

3 (0.35, 0.20, 0.00, 0.00) �0.79 �0.71 A �

4 (0.23, 0.19, 0.08, 0.07) �0.54 �0.51 A �

5 (1.32, 3.62, 1.57, 4.32) 0.74 0.48 B �

6 (0.15, 0.17, 0.82, 0.98) 1.26 0.72 B �

7 (0.18, 0.10, 1.02, 0.59) 0.98 0.76 B �

8 (0.97, 0.17, 0.17, 0.03) �1.37 �0.93 A �

9 (0.68, 0.25, 0.00, 0.00) �1.18 �0.79 A �

10 (0.83, 0.48, 1.44, 0.83) 0.67 0.17 B �

11 (1.27, 1.06, 3.48, 2.92) 1.13 0.76 B �

12 (0.40, 0.40, 0.40, 0.40) �0.10 �0.26 A �

13 (0.09, 0.15, 0.49, 0.85) 0.80 0.55 B �

14 (0.10, 0.55, 0.06, 0.32) �0.19 �0.28 A �

15 (1.94, 0.34, 0.34, 0.06) �1.22 �1.10 A �

16 (3.42, 1.24, 1.97, 0.72) �0.34 �0.39 A �

17 (0.66, 0.00, 1.80, 0.00) 0.40 �0.02 A ⨯

Experiment for 4D vectors:

~vA = (1, 0, 0, 0).

~vB = (0, 0, 1, 1).

500 measurements per estimation.

Data acquisition time for one vector

is 2 min.
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Experiments: results
8D classi�cation

DA�DB

TheoryExp:
Group Correct?

1 (2.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) �1.24 �0.84 A �

2 (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.60) 0.77 0.55 B �

3 (1.77, 0.00, 0.00, 0.00, 1.24, 0.00, 0.00, 0.00) �0.92 �0.52 A �

4 (0.40, 0.23, 0.11, 0.06, 0.03, 0.02, 0.01, 0.01) �0.45 �0.14 A �

5 (0.00, 0.00, 1.23, 1.23, 0.00, 0.00, 0.33, 0.33) 0.17 0.10 B �

6 (0.30, 0.03, 0.30, 0.03, 1.12, 0.10, 1.12, 0.10) �0.11 �0.24 A �

7 (0.42, 0.90, 0.35, 0.76, 0.00, 0.00, 0.00, 0.00) �0.28 �0.21 A �

8 (0.54, 0.54, 0.00, 0.00, 0.54, 0.54, 0.00, 0.00) �0.43 �0.50 A �

9 (0.11, 1.24, 0.19, 2.15, 0.06, 0.72, 0.11, 1.24) 0.40 �0.17 A ⨯

Experiment for 8D vectors:

~vA = (1, 0, 0, 0, 0, 0, 0, 0).

~vB = (0, 0, 0, 0, 0, 0, 0, 1).

500 measurements per estimation.

Data acquisition time for one vector is 4 min.
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Experiments: summary

Experiments summary:

First experimental demonstration of machine learning on a photonic

quantum computer.

Experimental prove of suitability and potential power of quantum

machine learning.

Future studies are planned to design circuits that will be able to

achieve speed-up not only with respect to N but also with respect to

number of training samples M.
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