Topic modelling.

Victor Kitov

v.v.kitov@yandex.ru

Common dimensionality reduction methods

- LSA
- non-negative matrix factorization
- pLSA
- LDA
- more advanced topic models

LSA

- LSA (latent semanyic analysis) the process of applying SVD for dimensionality reduction
 - mainly used in text domain (objects=documents)
 - also called LSI (latent semantic indexing)
- SVD decomposition: $X = U\Sigma V^T$, $U^TU = I$, $V^TV = I$, $\Sigma = \text{diag}\left\{\sigma_1^2,...\sigma_R^2\right\}$, $U,V \in \mathbb{R}^{N\times R}$, $\Sigma \in \mathbb{R}^{R\times R}$, $R = \operatorname{rg} X$
- Truncated SVD of order K:
 - $\widehat{X}_K = U_K \Sigma_K V_K^T$, U_K , V_K -first K columns of U,V; Σ_K -first K columns&rows of Σ
 - $U_K, V_K \in \mathbb{R}^{NxK}$, $\Sigma_K \in \mathbb{R}^{KxK}$, $K \leq R$, usually $K \in [200, 500]$.

LSA

- Property of truncated SVD:
 - $\widehat{X}_K = \arg\min_{B: rg \ B \le K} \|X B\|_{Frobenius}^2$
- ullet Low order representations for new objects $x \in \mathbb{R}^{1 imes D}$
 - $U = XV\Sigma^{-1} => u = xV\Sigma^{-1}$
 - $U_K = XV_K\Sigma_K^{-1} => u_K = xV_K\Sigma_K^{-1}$

pLSA¹

- pLSA = probabilistic latent semantic analysis
- It is a probabilistic generative model for words in documents

¹Thomas Hofmann, Probabilistic Latent Semantic Indexing, SIGIR-99, 1999.

pLSA definition

- Documents collection may be represented as a sequence $\langle d, w_{d,c} \rangle_{d=\overline{1,D}}^{c=\overline{1,n_d}}$ of <document, word> pairs, where
 - *d* document number
 - c word-position number inside document
 - n_d length of document d
- We will have $n = \sum_{d=1}^{D} n_d$ such pairs.

pLSA generation

- For each word position:
 - document is sampled $d \sim p(d)$
 - ullet unobserved topic is sampled $z \sim p(z|d)$
 - word is sampled $w \sim p(w|z)$
- Comments:
 - Each document defines some distribution on topics $z \sim p(z|d)$
 - Each topic defines a distribution on words $w \sim p(w|z)$
 - only topic affects word distribution (not <topic,document>)

Equivalent «symmetric» representation of pLSA

$$p(d,w) = p(d)p(w|d) = p(d)\sum_{z}p(z|d)p(w|z)$$
 (1)

$$=\sum_{z}p(d,z)p(w|z)=\sum_{z}p(z)p(d|z)p(w|z) \qquad (2)$$

(a) asymmetric and (b) symmetric pLSA representation

Connection of pLSA to LSA

- In matrix form $X = U \Sigma V^T$, where
 - $X \in \mathbb{R}^{D \times W}$, $U \in \mathbb{R}^{D \times K}$, $\Sigma \in \mathbb{R}^{K \times K}$, $V \in W \times K$
 - U, V are stochastic, not orthogonal matrices
 - U, Σ, V are estimated with maximum likelihood, not Frobenius norm minimization
- pLSA more interpretable
 - document-topics distribution
 - topic-word distribution
 - We can truncate this representation by taking only topics with $p(z) \ge threshold$.
 - allows finding semantically close documents and words
 - segmentation into topics of running text

Dimensionality reduction with pLSA

- Define $x_{dw} := p(w|d)$, $a_{dz} := p(z|d)$, $b_{zw} := p(w|z)$
- $X = \{x_{dw}\} \in \mathbb{R}^{D \times W}, \quad A = \{a_{dz}\} \in \mathbb{R}^{D \times K}, \quad B = \{b_{zw}\} \in \mathbb{R}^{N \times K}\}$
- $p(w|d) = \sum_{z} p(z|d)p(w|z)$
- In matrix form X = AB
- $a_{d,:} \in \mathbb{R}^K$ -low dimensional representation of document d
- $b_{:.w} \in \mathbb{R}^K$ -low dimensional representation of word w
- Allows to find similar/dissimilar documents and words.

Segmentation into topics of running text

Label words with

$$\arg\max_{z} p(z|d,w) = \arg\max_{z} \frac{p(z,d,w)}{p(d,w)} = \arg\max_{z} p(z)p(d|z)p(w|z)$$

Counters definitions

- n total number of word positions
- n_d number of word positions in document d
- n_{dwz} -number $\langle d, w, z \rangle$ triples
- $n_{dw} = \sum_{z} n_{dwz}$, $n_{dz} = \sum_{w} n_{dwz}$, $n_{wz} = \sum_{d} n_{dwz}$
- $n_d = \sum_w n_{dw} = \sum_z n_{dz}, \ n_w = \sum_d n_{dw} = \sum_z n_{wz}, \ n_z = \sum_d n_{dz} = \sum_w n_{wz}$

General probabilistic model with latent variables

Suppose objects have observed features x and unobserved (latent) features z.

- $[x,z] \sim p(x,z,\theta), x \sim p(x,\theta)$
- denote $X = [x_1, x_2, ...x_N], Z = [z_1, z_2, ...z_N].$

To find $\widehat{\theta}$ we need to solve

$$L(\theta) = \ln p(X|\theta) = \ln \sum_{Z} p(X, Z|\theta)
ightarrow \max_{\theta}$$

- This is intractable for unknown Z.
- We need to fallback to iterative optimization, such as SGD.
- Alternatively, we may use EM algorithm, which "averages" over different fixed variants of Z.

EM algorithm

INPUT:

training set $X=[x_1,...x_N]$ some initialization for $\hat{\theta}$ some predefined convergence criteria

ALGORITHM:

repeat until convergence:

E-step: set distribution over latent variables:

$$q(Z) = p(Z|X,\theta)$$

M-step: improve estimate of θ

$$\hat{\theta} = \arg\max_{\theta} \{ \sum_{Z} q(Z) \ln p(X, Z|\theta) \}$$

OUTPUT:

ML estimates $\hat{\theta}$ for training set.

EM algorithm for pLSA²

- Define n_{dw}-the count of word w in document d, c-cell number c in document, filled with some word w. Document d has n_d words (=cells filled with these words).
- Parameters $\theta = \{p(z), p(d|z), p(w|z); z = \overline{1, K}, w = \overline{1, W}, d = \overline{1, D}\}$
- Likelihood:

$$P(\{d, w_{d,c}\}_{c=1, n_d}^{d=\overline{1,D}}) = \prod_{d=1}^{D} \prod_{c=1}^{n_d} p(d, w_{d,c})$$

$$= \prod_{d=1}^{D} \prod_{c=1}^{n_d} \sum_{z=1}^{z} p(z) p(w_{d,c}|z) p(d|z)$$

²Derive pLSA estimation with EM when each document may belong only to single topic.

Log-likelihood (direct maximization intractable):

$$\ln P(\{d, w_{d,c}\}_{c=\overline{1,n_d}}^{d=\overline{1,D}}) = \sum_{d=1}^{D} \sum_{c=1}^{n_d} \ln \left(\sum_{z} p(z) p(w_{d,c}|z) p(d|z) \right)$$

• For known $z_{d,c}$ for all word positions:

$$\ln P(\{d, w_c\}_{c=1, n_d}^{d=\overline{1,D}}) = \sum_{d=1}^{D} \sum_{c=1}^{n_d} \ln \left[p(z_{d,c}) p(w|z_{d,c}) p(d|z_{d,c}) \right]$$

• E-step:

$$p(z|d, w) = \frac{p(z, d, w)}{p(d, w)} = \frac{p(z)p(d|z)p(w|z, k)}{\sum_{z'} p(z')p(d|z')p(w|z', k)}$$
$$= \frac{p(z)p(d|z)p(w|z)}{\sum_{z'} p(z')p(d|z')p(w|z')}$$

• M-step (reestimation of θ using p(z|d, w)):

$$\mathbb{E}_{z} \ln P(\{d, w_{c}, z_{c}\}_{c=\overline{1, n_{d}}}^{d=\overline{1, D}})$$

$$= \sum_{d=1}^{D} \sum_{c=1}^{n_{d}} \sum_{z} p(z|d, w_{d,c}) \ln [p(z)p(w_{d,c}|z)p(d|z)]$$

$$= \sum_{d=1}^{D} \sum_{w=1}^{W} n_{dw} \sum_{z} p(z|d, w) \ln [p(z)p(w|z)p(d|z)]$$

Constraints:

$$\sum_{z} p(z) = \sum_{w} p(w|z) = \sum_{d} p(d|z) = 1$$

Lagrangian:

$$L = \sum_{d=1}^{D} \sum_{w=1}^{W} n_{dw} \sum_{z} p(z|d, w) \left[\ln p(z) + \ln p(w|z) + \ln p(d|z) \right]$$

$$+\alpha \sum_{z} (1 - p(z)) + \beta_{z} \sum_{w} (1 - p(w|z)) + \gamma_{z} \sum_{d} (1 - p(d|z))$$

$$\frac{\partial L}{\partial p(z)} = \sum_{d} \sum_{w} n_{dw} p(z|d, w) \frac{1}{p(z|w)} - \alpha = 0$$

$$p(z) \propto \sum_{d} \sum_{w} n_{dw} p(z|d, w) = n_{z}$$

$$p(z) = n_{z}/n$$

$$\frac{\partial L}{\partial p(w|z)} = \sum_{d} n_{dw} p(z|d, w) \frac{1}{p(w|z)} - \beta_z = 0$$

$$p(w|z) \propto \sum_{d} n_{dw} p(z|d, w) = n_{wz}$$

$$p(w|z) = n_{wz}/n_z$$

$$\frac{\partial L}{\partial p(d|z)} = \sum_{w} n_{dw} p(z|d, w) \frac{1}{p(d|z)} - \gamma_z = 0$$
$$p(d|z) \propto \sum_{w} n_{dw} p(z|d, w) = n_{dz}$$
$$p(d|z) = n_{dz}/n_z$$

EM algorithm

Initialize p(z), p(d|z), p(w|z). Iterate until convergence:

• E-step:

$$p(z|d,w) = \frac{p(z)p(d|z)p(w|z)}{\sum_{z'}p(z')p(d|z')p(w|z')}$$

M-step:

$$\begin{split} n_z &= \sum_d \sum_w n_{dw} p(z|d,w) \\ n_{wz} &= \sum_d n_{dw} p(z|d,w) \\ n_{dz} &= \sum_w n_{dw} p(z|d,w) \\ p(z) &= \frac{n_z}{n} \qquad p(w|z) = \frac{n_{wz}}{n_z} \qquad p(d|z) = \frac{n_{dz}}{n_z} \end{split}$$

Comments

• p(z|d) - more reasonable and useful statistic.

$$p(z|d) = \frac{p(z,d)}{p(d)} = \frac{p(z)p(d|z)}{\sum_{z'} p(z')p(z'|d)} = \frac{\frac{n_z}{n} \frac{n_{dz}}{n_z}}{\sum_{z'} \frac{n_{z'}}{n} \frac{n_{dz'}}{n_{z'}}}$$
$$= \frac{n_{dz}}{\sum_{z'} n_{dz'}} = \frac{n_{dz}}{n_d}$$

- Result of EM depends on starting conditions!
 - better init with some reasonable topics, based on human document categorization.
 - may init using results of document clustering into K-clusters
 - more natural to init p(z|d) than p(d|z)

LDA method³

- Bayesian extension of pLSA
- Distributions p(z|d) and p(w|z) are «inner random parameters» with prior distributions:

$$p(z|d) \sim Dir(\alpha), \quad p(w|z) \sim Dir(\beta)$$

Probability density function of Dirichlet(α), $\alpha = \{\alpha_k\}_{k=1}^K$

 $^{^3}$ Derive LDA estimation with EM for $_{20} \geq 1,~\beta \geq 1$ elementwise.

LDA variables

Parameters:

- α -Dirichlet prior on topics distributions p(z|d)
- β -Dirichlet prior on words distributions p(w|z)

Estimated values:

- $\varphi_z = p(w|z), \ w = \overline{1, W}, \ z = \overline{1, Z}$
- $\theta_d = p(z|d), z = \overline{1, Z}, d = \overline{1, D}$

Latent variables:

• topics at each word-position:

$$z_i^d$$
, $d = \overline{1, D}$, $i = \overline{1, n_d}$

Observed variables:

words at each word-position:

$$w_i^d$$
, $d = \overline{1, D}$, $i = \overline{1, n_d}$

LDA-data generation process

- **9** generate $\theta_d \sim Dir(\alpha)$, $d = \overline{1, D}$
- 2 generate $\varphi_z \sim Dir(\beta)$, $z = \overline{1, Z}$
- **3** for each document d and each word-position $n = \overline{1, n_d}$:
 - **1** generate topic $z_n^d \sim Multinomial(\theta_d)$
 - **2** generate word $w_n^d \sim Multinomial(\varphi_{z_n^d})$

Extensions of topic models

- Automatically select number of topics (e.g. HDP)
 - still need to specify «willingless to make new topic»
- hierarchical set of topics
 - greedy layerwise optimization
 - joint optimization for whole hierarchy

Extensions of topic models

- Document representation may contain not only sequence of words but also sequence of other entities:
 - possible entities: title text, authors, keywords, links, users who read them, etc.
- If document has other properties, they can be also generated in topic model
 - length, time, source, etc.
- Topic modeling can be applied to any objects, represented as sequences of entities
 - we considered only objects=documents, entities=words on word-positions.
- Other possible application domains:
 - DNA sequences of genes
 - video records with particular events

Applications⁴

- Topic models can be applied for:
 - dimensionality reduction (feature extraction)
 - document clustering
 - document summarization
 - topics segmentation inside documents
 - word clustering

⁴See K.V.Voronsov's course on topic modelling for more.