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Definition of decision tree

Example of decision tree
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Definition of decision tree

Definition of decision tree

@ Prediction is performed by tree T:

o directed graph
o without loops
e with single root node
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Definition of decision tree

e for each internal node t a check-function Q;(x) is associated

o for each edge r;(1),...r:(K;) a set of values of check-function
Q:(x) is associated: S¢(1),...S¢(K:) such that:

o |, St(k) = range[Qy]
o Si()NS&() =0 Vi#J
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Definition of decision tree

Prediction process

@ a set of nodes is divided into:

e internal nodes int(T), each having > 2 child nodes
e terminal nodes terminal(T), which do not have child nodes
but have associated prediction values.
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Definition of decision tree

Prediction process

@ a set of nodes is divided into:

e internal nodes int(T), each having > 2 child nodes
e terminal nodes terminal(T), which do not have child nodes
but have associated prediction values.

@ Prediction process for tree T:

e t=root(T)
o while t is not a leaf node:

@ calculate Q;(x)
o determine j such that Q:(x) € Si())
e follow edge r:(j) to j-th child node: t = ;

e return prediction, associated with leaf t.
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Definition of decision tree

Specification of decision tree

@ To define a decision tree one needs to specify:

the check-function: Q;(x)

the splitting criterion: K; and S;(1),...S¢(K})

the termination criteria (when node is defined as a terminal
node)

o the predicted value for each leaf node.
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Possible definitions of splitting rules

o Q:(x) = x'(", where S;(j) = v;, where vy, ...vx are unique
values of feature x/(*).

o Si(1) = {X') <A}, 8:(2) = {/®D > ny}

o S¢(j) = {h; < 2 < hj, 1} for set of partitioning thresholds
hi,hy, . hi .

o Si(1)={x: (x,v) <0}, S8(2)={x: (x,v) >0}

o Si(1) ={x: |z <h}, Si(2) ={x: [xl > h}

@ etc.
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Most famous decision tree algorithms

@ CART (classification and regression trees)

o implemented in scikit-learn

e C4.5
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CART version of splitting rule

@ single feature value is considered:
Ot(x) = xi(t)

@ binary splits:
Kt = 2

@ split based on threshold A;:
St = {0 <}, S = {2V > n}

@ h(t) e {xq(t),xg(t), ...x;\(,t)}

e applicable only for real, ordinal and binary features
o discrete unordered features:
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CART version of splitting rule

@ single feature value is considered:

Ot(x) = xi(t)

@ binary splits:
Kt = 2

@ split based on threshold A;:
St = {2 < n}, S = {£O > n}
(1) _i(t 16
@ h(t) e {xq( ),x'z( ), ...x;\(,)}
e applicable only for real, ordinal and binary features

o discrete unordered features:may use one-hot encoding.
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Analysis of CART splitting rule

@ Advantages:
e simplicity
o estimation efficiency
o interpretability

@ Drawbacks:

e many nodes may be needed to describe boundaries not
parallel to axes:
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Piecewise constant predictions of decision trees
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Sample dataset
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Sample dataset
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Classification tree decision regions (max_depth=1)
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Classification tree decision regions (max_depth=
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Classification tree decision regions (max_depth=3)




Decision trees - Victor Kitov
Splitting rules

Classification tree decision regions (max_depth=




Decision trees - Victor Kitov

Splitting rules

Example: Regression tree

Regression tree, max_depth = 1
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Splitting rules

Example:

Regression tree

Regression tree, max_depth = 4
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Impurity function

@ Impurity function ¢(t) = ¢(p(w1lt), ...o(wc|t)) measures the
mixture of classes using class probabilities inside node t.
@ It can be any function ¢(q1, g2, ...g¢) with the following
properties:
o ¢ is defined for g; >0 and 3, q; = 1.
e ¢ attains maximum for g; =1/C, k=1,2,...C .
e ¢ attains minimum when 3j: g; =1, q; =0 Vi # /.
e ¢ is symmetric function of g1, gy, ...qc.
@ Note: in regression ¢(t) measures the spread of y inside
node ¢.

e may be MSE, MAE.
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Typical impurity functions

@ Gini criterion

e interpretation: probability to make mistake when predicting
class randomly with class probabilities [p(wi|t), ...o(wc|t)]:

I(t) = z:/!)(w/'li‘)(1 —p(wilt)) =1- Z:[P(wl'li‘)]2

o Entropy
o interpretation: measure of uncertainty of random variable

I(t) = — ZP(M‘V) In p(w;|t)

I

o Classification error

e interpretation: frequency of errors when classifying with the
most common class

I(t) = 1 — maxp(wj|t)
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Impurity functions for binary classification with class probabilities
p = p(wilt) and 1 —p = p(w,|t).
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Splitting criterion selection
R
N(t;)

Alt) =1I(t) = > (1) N

i=1

@ AI(t) is the quality of the split' of node ¢ into child nodes
t,...lg.

'If I(t) is entropy, then Al(t) is called information gain.
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Splitting criterion selection
R
N(t)

Alt) =1I(t) = > (1) N

i=1

@ AI(t) is the quality of the split' of node ¢ into child nodes
t,...lg.

@ CART selection: select feature /; and threshold A;, which
maximize A/(t):

iy, hy = arg max Al(t)

@ CART decision making: from node t follow:
left child t,  if x'* < h;
right child t,, if X > h;

'If I(t) is entropy, then Al(t) is called information gain.
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Regression: prediction assignment for leaf nodes?

@ Define Iy = {i : x; € nodet}

@ For mean squared error loss (MSE):

:argmmz WZy,,

i€l

@ For mean absolute error loss (MAE):

y = arg m|n Z ly — | = median{y; : i € I+}.
i€l

2Prove optimality of estimators for MSE and MAE loss.
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Classification: prediction assignment for leaf nodes

@ Define A\(wj,w;) - the cost of predicting object of class w; as
belonging to class w;.

e Minimum loss class assignment:
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Classification: prediction assignment for leaf nodes

@ Define A\(wj,w;) - the cost of predicting object of class w; as
belonging to class w;.

e Minimum loss class assignment:

¢ = argmin Z Aci,w)

i€l

e For /\(wi,wj) = ]I[w; 7& w/']I
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Classification: prediction assignment for leaf nodes

@ Define A\(wj,w;) - the cost of predicting object of class w; as
belonging to class w;.

e Minimum loss class assignment:

¢ = argmin Z Aci,w)

i€l

o For Mwi,wj) = Iw; # wj]:most common class will be
associated with the leaf node:

c=argmax|{i: i€l y =w}
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Termination criterion

@ Bias-variance tradeoff:

e very large complex trees -> overfitting
o very short simple trees -> underfitting

@ Approaches to stopping:

o rule-based
e based on pruning
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Rule based termination

e Termination criterion
@ Rule based termination
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Termination criterion

Rule based termination

Rule-base termination criteria

@ Rule-based: a criterion is compared with a threshold.
@ Variants of criterion:

depth of tree

number of objects in a node

minimal number of objects in one of the child nodes
impurity of classes

change of impurity of classes after the split
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Rule based termination

Analysis of rule-based termination

Advantages:
@ simplicity
@ interpretability
Disadvantages:
@ specification of threshold is needed

@ impurity change is suboptimal: further splits may become
better than current one

e example:
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CART pruning algorithm

e Termination criterion

@ CART pruning algorithm
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Termination criterion
CART pruning algorithm

CART?

@ General idea: build tree up to pure nodes and then prune.
@ Define:

o T be some subtree of out tree

o T; full subtree with root at node t

o T be a set of leaf nodes of tree T

e M(t) - the number of mistakes inside node t of the tree on the
training set.

@ Also define
error-rate loss : R(T) =27 R(2)
complexity+error-rate loss: R (T) = >, 7 Ra(t) = R(T) + o T|
e Condition when R,,(T;) = R, (t):
R(t) — R(T,
. _ R = R(T)
[Te| =1

3Simple pruning based on validation set.
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Termination criterion
CART pruning algorithm

Pruning algorithm

@ Build tree until each node contains representatives of only
single class - obtain tree T.

© Build a sequence of nested trees T =Ty D 71 D ... D T
containing |T|, |T| — 1,...1 nodes, repeating the procedure:

o replace the tree T; with smallest o, with its root t
e recalculate o4 for all ancestors of t.

© For trees Ty, Ty, ... 77| calculate their validation set
error-rates R(To), R(T1),...R(T 7))
@ Select T;, giving minimum error-rate on the validation set:

i =argminR(T;)
1
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Termination criterion

CART pruning algorithm

Example
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CART pruning algorithm

Example

Logs of the performance metrics of the pruning process:

step num. ‘ Ok ‘ |7-k\ ‘ R(Tk) ‘

1 0 11 | 0.185
2 0.0075 | 9 0.2

3 0.01 6 0.22
4 0.02 5 0.25
5 0.045 3 0.34
6 005 2 0.39
7 0.1 1 0.5
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CART pruning algorithm

Handling missing values

If checked feature is missing:
@ fill missing values:

o with feature mean
e with new categorical value “missing” (for categorical values)
e predict them using other known features

@ CART uses prediction of unknown feature using another
feature that best predicts the missing one: “surrogate split”
- technique

@ ID3 and C4.5 decision trees use averaging of predictions
made by each child node with weights

N(t:)/N(t), N(t2)/N(t), ... N(ts) /N(2).
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Termination criterion

CART pruning algorithm

Analysis of decision trees

o Advantages:

simplicity

interpretability

implicit feature selection

naturally handles both discrete and real features
prediction is invariant to monotone transformations of
features for Q,(x) = 2/

@ work well for features of different nature
@ Disadvantages:

e non-parallel to axes class separating boundary may lead to
many nodes in the tree for Q;(x) = x'(*)

o one step ahead lookup strategy for split selection may be
insufficient (XOR example)

e not online - slight modification of the training set will require
full tree reconstruction.
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