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Minimum cost and maximum probability solutions

Costs

Classification

@ supervised learning

o y € {1,2,...C} takes finite discrete set of values

® )\ is the cost of predicting true class y with forecasted class
f.

@ Examples with costs: diagnosis prediction, fraud detection,
spam filtering, intrusion detection.
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Costs

o Matrix of outcomes:

f=1|f=2]|.--- | f=C
y=1] A A2 || Aic
y=21| A Ao || Aoc
y=C| Ac1 | A2 |-+ | Acc

e Expected cost of solution y(x) = f:

L(F) = plylx)Ays
y
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Minimum cost and maximum probability solutions

Decision rule

@ Which best prediction y(x) for object x to select?

Bayes minimum risk decision rule

Assign class, yielding minimum expected cost:

y(x) = argmfin L(f) (1)

@ This rule minimizes expected cost among all rules (if p(y|x)
are correct).
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Simplifications

e A\ = Ay # f]: constant within class cost of
misclassification.
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misclassification.
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e Expected cost of solution y(x) = f:
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Equal misclassification costs

@ Then cost of prediction equals:

const(f)
L(F) = plyONIIF #y] =) plylx)Ay —p(flx)Ar
y y
@ So (1) becomes:
y(x) = arg mfin L(f) = arg max Arp(fx) (2)

@ Suppose further A, = AVy, then
y(x) = argmax p(f|x)

@ This is termed maximum posterior probability rule or
Bayes minimum error rule because it yields minimum
probability of misclassification among all decision rules (given
that p(f|x) is correct)
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Equal misclassification costs

@ This rule minimizes expected error rate.

o if p(y|x) are known
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Minimum cost and maximum probability solutions

Equal misclassification costs

@ This rule minimizes expected error rate.
o if p(y|x) are known

e If x and y are independent, then (2) reduces to

7(x) = arg max p(|x) = arg max p()
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Gaussian classifier

@ In Gaussian classifier

PUXIY) = Gy {30 m) 5 - )
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Gaussian classifier

@ In Gaussian classifier
1

_ IRy Ts—1(,
P(X|Y)—(27T)D/2|zy|1/2€XP{ E(X fiy) X, (x My)}
o It follows that
log p(y|x) = logp(x|y)+ logp(y) — log p(x)

1 _ 1
= _E(X — ,uyT)Zyl(x — fy) — 5 log |, |

—g log(27) + log p(y) — log p(x)
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Gaussian classifier

@ In Gaussian classifier
1

_ IRy Ts—1(,
P(X|Y)—(27T)D/2|zy|1/2€XP{ E(X fiy) X, (x My)}
o It follows that
log p(y|x) = logp(x|y)+ logp(y) — log p(x)

1 _ 1
= _E(X — ,uyT)Zyl(x — fy) — 5 log |, |

D
— log(27) +log p(y) — log p(x)
@ Removing common additive terms, we obtain discriminant
functions:

() = log p(y) — 5 log |y | — 5 (x — ) "5, (x — my) (3)
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Gaussian classifier

Practical application

@ In practice we replace theoretical terms fi,, ¥, with their

sample estimates fi,, .

~ N,
° p(y) = -

SN TR U DS
8(x) = log py) — 5 log >y | = 5 (x = 7iy) "5 (x — fiy)

e Analysis:

o depends on normality assumptions (in particular - on
unimodality)
e needs to specify:

o CD parameters to estimate fi,, y = 1,2,...C.
e CD(D + 1)/2 parameters to estimate X, j =1,2,...C.
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Gaussian classifier

Simplifying assumptions

e CD(D + 3)/2 may be too large for multidimensional tasks
with small training sets.

e Simplifying assumptions:

o Naive Bayes: assume that ¥1,Y,,...> ¢ are diagonal.

Project data onto a subspace: for example on first few

principal components.

Proportional covariance matrices: assume that

Z]_ = al):, 22 = 0422, ZC = aCZ.

o Fisher’s linear discriminant analysis: assume that
Y1=Yy=..=2Xc.
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Gaussian classifier

QDA vs. LDA

Gaussian classifier is called:
e Quadratic discriminant analysis (QDA) when ¥1,Y5,...X ¢ are
arbitrary.
o class boundaries are quadratic!
o Linear discriminant analysis (LDA) when ;1 =¥, = ... =X¢

o class boundaries are linear?

Lporove this

Zprove this
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Naive Bayes assumption

High dimensional problem

p(xt, x%,..xP) = p(x))p(x?|x})...p(xP|x!, x2, .. xP~1)

Problem: exponential to D number of observations needed for
estimation.
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Naive Bayes assumption

High dimensional problem

P2, .. xP) = p(x1)p(x]x)...p(xP|xL, X2, ..xP~1)

e
Problem: exponential to D number of observations needed for
estimation.

Solution: make simplifying assumptions.

Independence assumption

Individual features are independent: p(x) = p(x!)p(x?)...p(xP)

Naive Bayes assumption in classification

| A

Individual features are class conditionally independent:
p(xly) = p(x"1y)p(*1y)--p(x"ly)

Under Naive Bayes assumption max-posterior probability rule
becomes:

y(x) = arg max p(y)p(x'1y)p(<°ly)...p(x"y)
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Naive Bayes assumption

Conditional independence visualization
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Model examples with naive Bayes assumption

Text models

@ Restrict attention to D words wy, ws, ...wp

e all unique words

e possibly with stop words removal

e possibly only most frequent words

e or only words relevant to the topic of study

@ Two major models:

e Bernoulli
o Multinomial
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Bernoulli model®

Document is represented with feature vector x € RP

x' = T[w; appeared in the document]
0y = p(x? =1|y)

xd 1—x4
p(xly) = Ia—1 (6)" (1= 5)

o
N
° ply) =W
N
d _ yxd
° 0y = 3,
S h d . 34, 9d _ Nyxd+a
@ >moothed variant™: y = WN,12a

3interpret this in terms of adding artificial observations
*modify for smoothing towards uncoditional word distribution

Sis it linear classifier?
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Multinomial model®

Document is represented with feature vector x € RP

x9 =number of times wy appeared in the document

6?)‘,1 =probability of wy on word position

p(xly) = (ZZX)) Hd 1(9d)

o o
%E\
E,
I
2\

where

e nyg - number of times word wy appeared in documentse y
e n, - number of words in documentse y

67. Qd — Nydta
) ~ ny+aD

@ Smoothed version

8interpret this in terms of adding artificial observations
"modify for smoothing towards uncoditional word distribution

8is it linear classifier?
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