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Introduction Approximation problem

Approximation problem

@ The given sample is D = (X,y) = {x;, y(x;) = vi}I"1,
x € X C R

@ We want to construct a model y(x) for the unknown function
y(x), such that

~

y(x) = y(x),

and provide uncertainty estimation 5*(x) for the prediction
y(x) (to construct confidence intervals).
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Introduction Kernel ridge regression

Kernel ridge regression

4/70

@ Suppose we have a positive-definite symmetric kernel k(x,x’).
o We consider the space #, of functions f(x)

oo

f(X) = Z wmk(xa Xm) = Z Ci(ﬁi(X),

=1

with functions ¢;(x) are from the eigen-decomposition of the
kernel k(x,x’) = > 72, 7idi(x) s (X').

@ This space of functions H;. is a reproducing kernel Hilbert
space (RKHS).

@ The function y(x) is a solution of the problem

n
;— (X 2+)\ 2 min ,
> = £+ AL, min,

i=1

h 2 =y> 4
where || fl[3, = >24 Yi
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Introduction Kernel ridge regression

Kernel ridge regression

@ It turns out that there is an equivalent finite-dimension
problem with K = {k(x;, x;)}7";_;:
(y — Kw)' (y — Kw) + Aw! K'w — min.

w

@ The solution has the form
w = (K + \,,)"'y.

@ The final approximation y(x) has the form
n
J(x) = > wik(x,%;) = k(x) " (K + A,) "y,
i=1

where k(x) = {k(x,x;)}I" ;.

5/70 A. Zaytsev Gaussian processes for variable fidelity data



Introduction Kernel ridge regression

Examples of H}. spaces

o Polynomial regression with penalty:
k(x,z) = 1+ 2x121 + 22220 + w%z% + x%zg + 2317921 29.
e Radial basis function with the kernel width 6:
k(x,2) = exp(—0||jx — z|}3).
@ Support vector machine with loss function

Z?:l[l —yif(xi)]+ + %WTKW:

f(x) =wo + Z wik(x, X;).

=1
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Introduction Kernel ridge regression

Problems with kernel ridge regression

7/70

@ How to select the kernel function and the kernel width 67

@ How to select regularization \?

e What is about uncertainty estimation (construction of
confidence intervals)?

One way to solve these problems is to use Bayesian-driven Gaussian
processes regression.
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Introduction Gaussian processes regression

Gaussian processes

o We suppose that y(x) is a realization
of Gaussian process.

e Gaussian process is a random process
for which any finite dimensional slice ...

of the process is a random vector with | /

a multivariate Gaussian distribution. |

. . /

@ To completely specify Gaussian _/
process one has to specify its mean [
and covariance function.

1.

Figure : Gaussian
process realizations
(one-dimensional x)
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Introduction Gaussian processes regression

Gaussian processes regression

@ The sample is

D = (X,y) = {x;,y(xi) = yi}i=1,
X E X g Rd 0§ © Training sample

—True function
- - -Posterior mean p1,, ()

Hn () & ()

@ Suppose that

0.4
o the function y(x) is a realization 02
of a Gaussian process, 3; o

e mean of the Gaussian process o2 N
equals zero, 04
e covariance function has the form 06

cov(y(x),y(x')) = k(x,x'). T T N I
@ For these assumptions joint
distribution of y is Gaussian:
y x N (0, K),
K = {k(xi,x;)}

n
ij=1'
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Introduction Gaussian processes regression

Gaussian processes regression

@ Posterior distribution y(x) at x is

Gaussian:
LaW(y(X) |D) = N(,un (X)7 0721 (X)) o S o o e
0.6| - "—_%‘roqufe&xélrc trzloegn Jin ()
o Posterior mean Mn(x) equals 0.4 pin(7) £ 0 (@)
0.2
U(x) = pn(x) = k' (X)K—ly, %_0: -
@ Posterior variance Og(X) equals _Z:

o2(x) = k(x,x) — k' (x) K 'k(x). o e 0e 08

10/70 A. Zaytsev Gaussian processes for variable fidelity data



Introduction Gaussian processes regression

Parametric assumption for Gaussian processes regression

© Training sample
—True function
- - -Posterior mean p1,, ()

Hn () & ()

@ Parametric assumption: covariance

0.4
function k(x,x’) coincides with o
ke(x,x’) for some 8 € © C RP?, ol
and covariance matrix has the form 2 Nl
Ko = {ko(xi,x;)}};_; - z:
@ Parametric assumption is -
. 08 0.2 0.4 0.6 0.8 1
possibly wrong. @
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Introduction Gaussian processes regression

Example of covariance function

@ Squared exponential covariance function

d
1
ko(x,x') = 63 exp ~3 ZQ?(&:Z — )| +o%(x — %),
i=1

here §(-) is Kroneker delta function. Number of parameters is
d+ 2.

i
A
M‘ﬂ i

i

i
s
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Introduction Gaussian processes regression

Other covariance functions

There are other covariance functions:

@ A non-stationary covariance-based Kriging method for
metamodelling in engineering design by Y. Xiong, W. Chen, et
al., JNME, 2007

o Matern Cross-Covariance Functions for Multivariate Random
Fields by T. Gneiting, W.K. Leiber, M.S. Chlather, JASA, 2011

o Additive Gaussian processes by D. Duvenaud, H. Nickisch,
C.E. Rasmussen, arXiv preprint, 2013
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Introduction Gaussian processes regression

Estimation of parameters @ of covariance function

@ We need to estimate the vector of parameters 6 € © C RP.

@ Maximum likelihood approach is a popular choice for
estimation of 6:

6 = argmax L(6),
6co

where the logarithm of the likelihood has the form:
L(6) = —% [n log 27 + log det (Kg) + yTKe_ly} .

o We hope that 0 is close in some sense to the central point 8*:

0" = argmax IEL(0),
6co

where IF is the mean with respect to N(0, K).
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Introduction Gaussian processes regression

Possibly wrong parametric assumption

@ Gaussian process regression allows one to model a broad class
of functions y(x).

@ However, parameter assumption is always wrong, i.e. true
covariance function, as the true covariance function k(x,x’)
doesn't belong to {kg(x,%x'),0 € O}.

@ In this case 8* minimizes Kullback—Leibler divergence between
true distribution and distributions generated by 8 € ©

0* = argmin KL(N (0, K)|N (0, Ky)),
0co

i.e. 0" is the best parametric fit.
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Introduction Gaussian processes regression

Bayesian approach

@ Let us select a prior I1(d@) for the vector of parameters 0.

o Posterior distribution of @ has the form
Law (6| D) o exp{L(6)} I1(d6).

o In this case 6 % E{O | D} is a reasonable estimate of 0%,
where JE is a mean with respect to Law (6 | D).

@ In this work we consider the case of noninformative prior
distribution 11(d@).
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Introduction Gaussian processes regression

Computational limitations of Gaussian processes regression

@ To calculate likelihood and posterior mean we need to inverse
covariance matrix of size n x n — complexity is O(n?)!

@ The case of large samples n 2 5000 requires some kind of
approximation.

@ There exist some:

o Sparse Gaussian processes using pseudo-inputs, E. Snelson and
Z. Ghahramani, NIPS, 2005.

o On the Nystrém method for approximating a Gram matrix for
improved kernel-based learning, P. Drineas and M.W.
Mahoney, JMLR, 2006.

o Covariance tapering for interpolation of large spatial datasets,
R. Furrer, M.G. Genton and D. Nychka, JCGS, 2006.

o Gaussian processes for big data through stochastic variational
inference, J. Hensman, U.K. Sheffield, N. Fusi and N.D.
Lawrence, NIPS, 2012.
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Introduction Gaussian processes regression

State of the art. Theory

A number of papers consider asymptotic normality and consistency
of estimates of covariance function parameters for Gaussian
processes regression.

Author  Year Estimate
Mardia 1984 MLE
Kaufman 2008 MLE covariance tapering

Shabi 2010 MLE, Bayesian covariance tapering
Chu 2011 MLE with penality with and without covariance
tapering
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Introduction Gaussian processes regression

Problems to solve

State of the art papers consider the case:
e sample size n — oo (asymptotic results),
@ parametric assumption holds (true parametric assumption),

@ covariance tapering (we suppose that k(x,x’) = 0 if
|x —x'|| > d for some d).

While, we need results for the case:
@ MLE and Bayesian estimates;
e sample size is finite (nonasymptotic results);

@ parametric assumption can be wrong (possibly wrong
parametric assumption).
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Introduction ~ Gaussian processes regression for variable fidelity data

Regression for variable fidelity data

ny

o A low fidelity sample is D; = (X;,y1) = {x}, yu(x})}." |,
high fidelity sample is Dy, = (X, ys) = {x', yn(x?)} ", with
x xP e RY, y(x), yn(x) € R.

@ The low fidelity function y;(x) and the high fidelity function
yr(x) model the same physical processes, but with different
fidelity.

@ Using both the low and the high fidelity samples we need to
construct a regression model ¥, (x) =~ yp,(x) of the high fidelity
function and uncertainty estimation for it.

and a
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Introduction Gaussian processes regression for variable fidelity data

Examples of variable fidelity data

@ yn(x) is a high fidelity function, y;(x) is a low fidelity function,
xeXCR” y€R, y, €R.

Low fidelity High fidelity
CFD with coarse mesh CFD with dense mesh
Full potential equations for CFD  Euler equations for CFD
Numerical experiments Nature experiments
Noised data Noise-free data
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Introduction Gaussian processes regression for variable fidelity data

Example: surrogate model construction for an airfoil

o A lift coefficient C; and a drag
coefficient Cy describe quality of an
airfoil.

o Fast evaluation of an airfoil quality
is crucial to optimization of an
airfoil.

@ We can evaluate C; and Cj using
low and high fidelity solvers.

Equations Euler Full potentials
Fidelity High Low
Time (CPU), seconds 600 10
Sample size 100 10000

22/70 A. Zaytsev Gaussian processes for variable fidelity data



Introduction Gaussian processes regression for variable fidelity data

Gaussian processes regression for variable fidelity data

@ At the moment there is no algorithm that can proceed large
samples of variable fidelity data.

@ It is relevant to construct an algorithm of surrogate model
construction based on Gaussian processes regression for
variable fidelity data.

@ The algorithm should not be ad hoc.
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Introduction Gaussian processes regression for variable fidelity data

Problems at hand

Problem 1 Provide theoretical foundation for Bayesian approach in
Gaussian processes regression.

Problem 2 Develop an algorithm that can proceed large samples of
variable fidelity data.

Problem 3 Access applicability of the presented approaches to real
problems.
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Bernstein-von Mises theorem for Gaussian processes

© Bernstein-von Mises theorem for Gaussian processes
@ The problem statement
@ Bernstein-von Mises theorem (BvM)
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Bernstein-von Mises theorem for Gaussian processes = The problem statement

Problem 1: theoretical foundation for Bayesian approach in

Gaussian processes regression

@ Construction of Gaussian processes regression model
equivalent to estimation of covariance function parameters.

@ [t is relevant to provide theoretical properties for covariance
function parameters estimates based on Bayesian and MLE
approaches.

@ Obtained results should hold for the case of finite sample sizes
and possibly wrong parametric assumption. The problem has
not been solved yet for this statement.
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Bernstein-von Mises theorem for Gaussian processes = The problem statement

Classic version of Bernstein-von Mises theorem (BvM)

@ Specify some prior for parameters.

@ For some regularity assumptions it holds that
_ ~ 1
Law (6| D) z/\/’(G,I(B) ) for n — oo

for MLE 6 and Bayesian estimate 6 in terms of total variation
distance. Fisher information I (5) has the form:

(o) = {moO2O}

@ BvM theorem advocates usage of Bayesian approach for point
and interval estimates from probabilistic point of view.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

@ Introduction

© Bernstein-von Mises theorem for Gaussian processes

@ Bernstein-von Mises theorem (BvM)

© Gaussian processes regression for variable fidelity data

@ Experiments with data
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Notation

@ Spectral norm of vector ||All2 = omax(A).
@ oo norm of vector HAHOO = maxXi<i<n Z?:l |a¢j|.
e Euclidian norm of vector a = {a1,...,a,} ||al2 = b a2

o Matrices D2 and V@ are analogues of Fisher information for
possibly wrong parametric assumption:

D} = -V*EL(0%), Vi=Var{VL(6")}.

If the parametric assumption is correct, then
D2 =V =1(6%).
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Notation

o Posterior mean 0 is Bayesian estimate of central point 6*:
6 E{o|D}.
@ Posterior variance has the form:
2 E{(0-9)(9-9) |D}.

@ We consider a vicinity of the central point
0" = argmaxgy.o IEL(0):

Oo(ro) ={0 € O : | Do(0 — 67| < xo}.

@ In results below all constants have explicit form, while we drop
this form for clarity and brevity.
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Bernstein-von Mises theorem for Gaussian processes

Bernstein-von Mises theorem

Bernstein-von Mises theorem (BvM)

Statement
Let assumptions (A1)—(A6) holds, ans sample size n (for fixed
C > 0) is greater than:

n > ZJLC’r%p3

Then there exists a random set (2(x) with probability at least
1 —5e™*, such that

P(8 ¢ Oo(xo)) < 3¢,
P(8 ¢ Oo(ro)) < 5e ™.

o Maximum likelihood estimate (MLE) 8 and Bayesian estimate
6 are close to the central point 8*.

31/70 A. Zaytsev Gaussian processes for variable fidelity data



Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Distribution of @ and

o Generate 400 samples D; of Gaussian processes realizations.
@ For each sample D; obtain MLE EZ and Bayesian estimate 6;.

o Using kernel density estimation (KDE) estimate density of 6
and 6 using obtained values {6,}7% and {6,}1%.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Obtained estimates of 0, parameters dimension p = 2.

@ We obtain kernel density estimate for 0 using samples D,
i = 1, 400.

@ While sample size n increases, estimates 6 concentrate in the
vicinity of the true value 6* = [2, 3].
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Obtained estimates of 6, parameters dimension p = 2.

@ We obtain kernel density estimate for @ using samples D,
i = T,400.

@ While sample size n increases, estimates 6 concentrate in the
vicinity of the true value 6* = [2, 3].

Bl Density estimation|
True 0* value
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Bernstein-von Mises theorem

Statement

There exists a constant {(rg,x) < %, such that for
A, = 1o (ro,x) with probability at least 1 — 5e* it holds:

|Do(8 — 8)|2 < 444 (x) + O3 (xo, %) + e %,
T, — DoS?Dy|2 < 4A0(x) + 4e™™.

@ Bayesian estimate converges to MLE with speed \/Lﬁ

@ Mean value @ of posterior distribution is close to MLE
(Maximum Likelihood estimate) 6.

o Covariance matrix of posterior distribution of parameters S? is
close to the matrix D0_2.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Statement of the theorem, p = 2.

|Do(8 — 0)]1? < 444 (x) + O3 (xo,x) + e,
|, — DoS?Dyl2 < 4Ao(x) + 4e™ ™.

0.25 7
02 6
an Zs
= 0.15 c\?_)
|
= SY
< 041 |
=} ok
0.05 J
0 1
50 100 150 200 50 100 150 200
Sample size Sample size

~ 2
(a) Values HDO (0 — 0) H2 for the  (b) Values HIZ,—DOSQDOHOjor the

sample sizes n sample sizes n
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Bernstein-von Mises theorem

Statement

For any measurable set A C IRP and « < N'(0, I,,) with probability
at least 1 — 5e™* it holds that:

P (Do(0 — 6) € A|D) >

> exp {—24,(x) — 3¢ *} (IPP(vy € A) — O(xo,%x)) — e,
P (Do(0 — 6) € A|D) <

< exp {246(x) + 27} (IP(vy € A) + O(ro,x)) + e~

@ Posterior distribution of parameters is close to Gaussian
distribution with respect to Total variance distance.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Normality of posterior distribution of parameters 6

@ We consider Total variance and Hellinger distances between
posterior distribution of parameters and Gaussian distribution
with the same mean and covariance matrix.

e For distributions with probability densities p(€) and ¢(0) total
variance distance is

TV.0) =5 [ 19(6) = a(0)ld6,

and Hellinger distance is
H(p,q) / (\/ —Vq( )

@ To calculate these distances we use numerical integration.
Then we average obtained distances for 200 runs.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Normality of posterior distribution of parameters 6

&;OAB 0.25
<

Zos5 g 02
.20. -
<

§ z
Z04 5 0.15
-CE =

- @

< a0
~0.3 5 01
—_ g

E e

o

Ho.

o
N
o
=)
5]

o
o

50 100 150 200 50 100 150 200
Sample size Sample size

Figure : Total variance and Hellinger distances between the posterior
distribution of parameters and Gaussian distribution with the same mean
and covariance matrix, p = 2
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Bernstein-von Mises theorem: results

MLE and Bayesian estimate are close to the central point.
MLE and Bayesian estimate approaches the central point with
speed \/iﬁ

Bayesian estimate 6 is close to MLE 0.

Covariance matrix of posterior distribution S? is close to the
matrix DO_Q.

The posterior distribution is close to Gaussian in terms of
Total variance distance.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

|dea of proof

o Idea of proof is to make upper bounds for exponential
moments of logarithms of likelihood and its derivatives using
introduced assumptions.

@ Using obtained upper bounds for exponential moments of
loglikelihood, apply modern empirical process theory to get the
theorem.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Assumptions about the covariance function (Al)—(A3)

(A1) The central point 8" = argmaxgcg IEL(0) exists.

(A2) kg(x,x’) is three times continuously differentiable with respect
to 8 € O for x,x’ € X,

(A3) There exist constants 0 < A < oo and 0 < A\g < oo, such that
12 < A [ Kall2 < A, 1K™ 2 < o, [[Kg Hl2 < A
for 6 € 6,
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Assumptions about the covariance function (A4)—(A6)

(A4) There exist constants 0 < A1, Ay, A3 < 00, such that

‘ Ok, , < A1, Haeao < )\, HWHQ <)\3for@eoO
and aII i,7,k € {1,.

(A5) There exists sufficiently smaII constant C' > 0, such that
A< Cfori=1,2,3.

(A6) The smallest eigenvalue of the matrix 2 DZ is greater than
do > 0, and the smallest eigenvalue of the matrix 1V;? is
greater than v > 0, where D3 = —V2IEL(6)
and V3@ = Var{VL(O)}!oze* .

|9:0*

Introduced assumptions are close to that used in the article by
Shaby (2012).
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Example of covariance function that satisfies the

assumptions

Statement

Squared exponential covariance function of the form
keo(x,x') = 67 (exp (—03|1x — x'|[3) + o?8(||x — x[13))

satisfies introduced assumptions for suitable design X and noise
variance o> > 0 and if parametric assumption holds.
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Bernstein-von Mises theorem for Gaussian processes = Bernstein-von Mises theorem (BvM)

Conclusions

o We introduced Bernstein-von Mises theorem for estimates of
covariance function parameters for Gaussian processes
regression

@ Our Bernstein-von Mises theorem holds for finite sample size
and possibly wrong parametric assumption.

o Posterior mean is close to MLE estimate, and thus is close to
the central point.

o Posterior covariance matrix is close to D 2.

o Posterior distribution of parameters is close to Gaussian
distribution with respect to Total variance distance.

@ There exists a widely used covariance function with parameters
space dimension p > 1, for which introduced assumptions hold.
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Regression for variable fidelity data

© Gaussian processes regression for variable fidelity data
@ Model for variable fidelity data regression
@ Sparse Gaussian process regression for variable fidelity data
@ Usage of blackbox for low fidelity function
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Regression for variable fidelity data Regression for variable fidelity data

Problem 2: regression for variable fidelity data

ny

o A low fidelity sample is D; = (X;,y1) = {x}, yu(x})}." |,
high fidelity sample is Dy, = (X, ys) = {x', yn(x?)} ", with
x xP e RY, y(x), yn(x) € R.

@ The low fidelity functiony;(x) and the high fidelity function
yr(x) model the same physical processes, but with different
fidelity.

@ Using both the low and the high fidelity samples we need to
construct a regression model ¥, (x) =~ yp,(x) of the high fidelity
function and uncertainty estimation for it.

and a
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Regression for variable fidelity data Regression for variable fidelity data

Gaussian processes regression model for mutifidelity data

@ We use a common cokriging model [Forrester, 2007]:
yi(x) = fi(x) + e, yn(x) = pyi(x) + ya(x),

Ya(x) = fa(x) + €a.

e fi(x) is a Gaussian process with covariance function k;(x,x’),
a realization of this process is the low fidelity function.

e f4(x) is a Gaussian process with covariance function k4(x, x’),
a realization of this process is difference between low and high
fidelity function multiplied by p.

@ ¢, €4 are Gaussian white noises with variances 012 and a?i,
correspondingly.

Here fi(x), fa(x) are independent Gaussian process with zero
means and covariance functions k;(x,x’) and kq(x,x’)
correspondingly.
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Regression for variable fidelity data Regression for variable fidelity data

Prediction using Gaussian processes regression model for

variable fidelity data

- X YI)
o Define X = Ly = .
(Xh) Y (yh

@ Posterior mean for the high fidelity function value at new
points X* has the form:

(X)) = K(X*, X)K ™y,
@ Posterior covariance matrix has the form:

V(X*) = p? K (X*, X*) + Kg(X*, X*)—
—KX*, X)) K" (K(X*, X)),
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Regression for variable fidelity data Regression for variable fidelity data

Notation for covariance matrices

* pKl(X*aXl) )
K(X* X)= M % )
(%) (pQK}(X X) + Ka(X*, X))
Ki(Xy, Xp) pK (X, Xp) )
K(X,X) = :
( ) (pKl(XhaXl) P*Ki(Xn, Xp) + Ka(Xp, Xp)

K (X4, Xp), Kq(Xq, Xp) are matrices of pairwise covariances of
y1(x) and y4(x) for points from sets X, and X}, correspondingly.
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Regression for variable fidelity data Regression for variable fidelity data

Covariance functions parameters estimation

We use the following procedure to estimate parameters of f;(x)
and f;(x) [Forrester, 2007]:

@ Estimate parameters of covariance function k;(x,x), using
common algorithm for Gaussian processes regression for the
sample D = D;.

@ Calculate differences between posterior means y;(x) for
Gaussian process y;(x) and x € Xp,.

© Estimate parameters of Gaussian process y4(x) with
covariance function kg(x,x’) and parameter p by maximization
of posterior density for D = Dgig = (Xn,yqa = yr — py1(Xn))-

@ Complexities of parameters estimation and posterior mean
evaluation are O(n?), where n = n; + ny,.
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Regression for variable fidelity data Sparse regression

Base points subsample

o Size of subsample of base points ny = n} +nj is such, that
we can do casual inference for the basic points subsample

o Fix subsample of base points from initial sample

byt 30 = () vt = (200))

@ Now we can use Nystrom approximation for covariance
matrices.
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Regression for variable fidelity data Sparse regression

Nystrom approximation for covariance matrices

We use subsample of base points and the following matrices:
Ky = (Kl(XllaXll) PKZ(leaXID )
pKi(X;, X)) pPE(X;, Xp) + Ka(X}, X))
Ky, = (KI(X117XZ) pKi(X], Xp) )
pKi(X;, X1) pKi(Xy, Xp) + Ka(X;, Xp) )

pKl(X*lel) )
).

Kf=
1 (p2Kl(X*, X5+ Kg(X*, X}

Then for new points X* = {x}}?_, we get approximation of the
form K(X*, X), K and K(X*, X*):

K(X*,X )= KK 'Ky, K = (K1)"K 'K,
K(X*,X*) = K{ K (KD)T.
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Regression for variable fidelity data Sparse regression

Prediction using Nystrom approximation

Define

(o'il nl 0 )
R=\|"%9 __1_71 |

where I}, is a unity matrix of size k;

) Cl = RKl;
@ Vi; is the Cholesky decomposition of matrix K;1;
o V=01Vt

Statement

For posterior mean using Nystrom approximation we get:

o(X*) = KiVi (I, + VIV) v Ty,
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Regression for variable fidelity data Sparse regression

Uncertainty of prediction using Nystrom approximation

Use also the following approximation k(x*, X) ~ KiK' KT,
E(X,X)~ R2+ K K 'K{.

Statement

For posterior variance Nystrom approximation has the form:

52(x") = k(x',x") = K{ViT (L + VIV) T (VIV)VR K

Statement

Computational complexities of posterior mean and variances
calculation are O(nn?).
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Regression for variable fidelity data Usage of blackbox for low fidelity function

@ Introduction

© Bernstein-von Mises theorem for Gaussian processes

© Gaussian processes regression for variable fidelity data

@ Usage of blackbox for low fidelity function

@ Experiments with data
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Regression for variable fidelity data = Usage of blackbox for low fidelity function

Approach to proceed variable fidelity data with a blackbox

@ Suppose there is blackbox for the low fidelity function y;(x),
so we can get low fidelity function value for any point from the
design space X C R%.

@ Then we can include in regression model the low fidelity
function value at the target point x.
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Regression for variable fidelity data = Usage of blackbox for low fidelity function

@ Add to the sample a pair of point and the low fidelity function
value at this point.

@ Then prediction and uncertainty estimation for this prediction
has the form:

~exp

Yn (X) = kepre_X%)yexp,
Vexp (x) = szl(x, x) + Kg(x,x) — kL K1 Kexp-

exp~rexp

Statement

Complexity of the Cholesky decomposition update is O(n?).
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Experiments with data

Problem 3: Access applicability of the presented approaches

to real problems

We compare the following approaches:
o GP — Gaussian processes regression,

o VFGP — Gaussian processes regression for variable fidelity
data,

@ SVFGP — Sparse Gaussian processes regression for variable
fidelity data,
e BB VFGP — Gaussian processes regression for variable fidelity
data with low fidelity function blackbox available,
We estimate quality of models using RRMS and a test sample

Dtest — {X‘dest, yztest fh (X‘zcest) " 1.

R Z 1 ( Un(x ( test) ytest)
RRM S(Dyest, §) = =1= L
(Diests9) Sty (T — yiet)?
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Experiments with data

Performance of BB VFGP for artificial data

We use the following high and low fidelity functions:

yn(x) = (6 — 2)? sin(12z — 4),
yi(x) = 0.5yp(x) + 10(z — 1).

np, 6 15 30
GP 0.7102 0.0159 3.83e — 04
VFGP 0.3036 7.42e —04 1.38¢—04
BB VFGP 0.1610 6.90e — 07 1.67e —07

Table : RRMS for different sample sizes of the high fidelity sample ny,
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Experiments with data

Performance of SVFGP and BB VFGP for artificial data

Let high fidelity and low fidelity functions be (e, €; are Gaussian
white noise with variance 0.001, 0.002):

d
yn(x) =20 + Z(:c? — 10 cos(2mz;)) + ep, x € 0,1]%,

=1

d
yi(x) = yn(x) + 0.2 (z; +1)* + &, x € [0,1)7.
i=1

ng 1000 3000 5000
VFGP 30.46 852.70 7283.27

SVFGP  30.46 33.42 37.50
BB VFGP 30.38 842.97 7672.60

Table : Training times (in seconds) for VFGP, SVFGP, and BB VFGP.
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Experiments with data

Performance of SVFGP and BB VFGP for artificial data

ny 1000 3000 5000
VFGP 0.0502 0.0170  0.0058
SVFGP  0.0502 0.0305  0.0260
BB VFGP 0.0010 0.00029 0.00017

Table : Comparison of RRMS errors

n 1000 3000 5000
VFGP 0.3636 0.1351  0.1028
SVFGP  0.3636 0.3281  0.3586
BB VFGP 0.000998 0.00113 0.00034

Table : Comparison of extrapolation RRMS errors
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Experiments with data
Rotating disk problem

o We predict maximum radial
displacement w2 and maximum
load spmax for a rotating disk in an
airplane engine.

e Geometry description includes 9
parameters: radiir;, i =1,...,6
define where thickness of disk
changes, and thicknesses t1, t3, t5
define thicknesses.

@ Radii 14,75 and thickness t3 are
fixed for this problem.
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Experiments with data
Results for rotating disk problem

np, 20 40 60 80 100
GP 0.3368 0.1826 0.1305 0.1091 0.0756
VFGP 0.1679 0.0998 0.0822 0.0564 0.0435
SVFGP  0.1018 0.0658 0.0494 0.0427 0.0339
BB VFGP 0.0964 0.0717 0.0503 0.0434 0.0347

Table : RRMS errors for tpax

np 20 40 60 80 100
GP 0.5261 0.3181 0.2164 0.2095 0.1643
VFGP 0.2336  0.2326 0.2058 0.1321 0.1088
SFGP 0.1674 0.1095 0.1023 0.0939 0.0812
BB VFGP 0.1583 0.1283 0.1295 0.0899 0.0793

Table : RRMS errors for spmax
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Experiments with data
Optimization using surrogate models

M, Umax — min (1)
T15-076,581,13,t5

Umax < 0.3, Smaz < 600,
10 < 1 < 110,120 < o < 140,
150 < r5 < 168,170 < 74 < 200,
4<t <504 <t3 <50,
rs = 210,76 = 230, 5 = 32.
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Experiments with data
Optimization algorithm

66/70

o Generate initial sample of size 30 points using LHS.

e Construct surrogate models using GP, VFGP, SVFGP and BB
VFGP approaches.

@ Solve multiobjective optimization problem at hand using these
surrogate models as the target functions and constraints.

@ To estimate quality of models we calculate true values at
Pareto frontiers obtained during optimization using high
fidelity solver.
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Experiments with data

Obtained Pareto frontiers
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Figure : Pareto frontiers obtained using optimization of surrogate models
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Experiments with data
Optimization using surrogate models

Objective GP VFGP SVFGP BB VFGP
m 16.62 1569 15.09 15.63
0.8m + 0.2upax 73.65 70.74 70.71 68.10
0.6m + 0.4umax 125.10 117.37 116.21 112.55
0.4m + 0.6umax 176.55 163.89 161.18 156.99
0.2m 4+ 0.8Umax 228.00 210.33 206.12 201.44
Umax 279.44 256.77 251.05 245.89
Feasible points share  0.54 0.57 0.55 0.75

Table : Optimization results for three different surrogate models used
with minimal values for different optimization objectives. Also we present
share of feasible points in the final Pareto frontier. The best values are in
bold font.
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Obtained results
Obtained results: Problem 1

o We introduced Bernstein-von Mises theorem for estimates of
covariance function parameters for Gaussian processes
regression

@ Our Bernstein-von Mises theorem holds for finite sample size
and possibly wrong parametric assumption.

o Posterior mean is close to MLE estimate, and thus is close to
the central point.

o Posterior covariance matrix is close to D 2.

o Posterior distribution of parameters is close to Gaussian
distribution with respect to Total variance distance.

@ There exists a widely used covariance function with parameters
space dimension p > 1, for which introduced assumptions hold.
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Obtained results
Obtained results: Problems 2 and 3

@ We proposed an approach for proceeding of variable fidelity
data with large sample sizes.

@ We proposed an approach for update of model if blackbox for
low fidelity function is available.

e MACROS library by DATADVANCE includes introduced
approaches.
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Obtained results
Publications

e A.A. Zaitsev, E.V. Burnaev and V.G. Spokoiny, Properties of
the posterior distribution of a regression model based on
Gaussian random fields, Automation and Remote control, 2013

o A.A. Zaitsev, E.V. Burnaev and V.G. Spokoiny, The
Bernstein-von Mises theorem for regression based on Gaussian
Processes, Russian Mathematical Surveys, 2013

e A.A. Zaitsev, E.V. Burnaev and V.G. Spokoiny, Properties of
the Bayesian Parameter Estimation of a Regression Based on
Gaussian Processes, Journal of Mathematical Sciences, 2013

o A.A. Zaitsev and E.V. Burnaev, Variable fidelity surrogate
modeling using low fidelity function blackbox and
sparsification, preprint, 2015
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Obtained results
State of the art

e Forrester, A. et al., Engineering Design via Surrogate
Modelling: a Practical Guide, Chichester, Wiley, 2008.

e Rasmussen C.E., Gaussian processes for machine learning,
Cambridge, The MIT press, 2006.

@ Shaby, B., Ruppert, D., Tapered Covariance: Bayesian
Estimation and Asymptotics, J. Comp. Graph. Stat., 2012,
21, 2, 433-452.

o Mardia, K.V., Marshall, R.J., Maximum likelihood estimation
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Biometrika, 1984, 71, 1, 135-146.
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Ann. Statist., 2012, 50, 6, 2877-2909.
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Obtained results

Common behaviour of posterior density of 8

70/70

o We use squared exponential
covariance function.

@ Noise variance o2 is fixed and
equals 0.01.

o Parameter 0% equals 0.5.
@ Sample size n equals 50.

@ We use noninformative prior
distribution.

A. Zaytsev
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Obtained results

Degenerate behaviour of posterior density of @

o We use squared exponential
covariance function.

o Noise variance o2 is fixed and
equals 0.01.

—Posterior density
- --True parameter value 0*

o Parameter 0% equals 0.5.
@ Sample size n equals 50.

@ We use noninformative prior
distribution.

Posterior density

@ Due to design X covariance
matrix is close to singular.
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Ob d results

Common behaviour of posterior density of 6

o We use squared exponential
covariance function.

@ Noise variance o2 is fixed and
equals 0.01.

®Posterior density
x 0* parameters

o Parameter 0% equals [2, 3].

»
]

N

@ Sample size n equals 500.

@ We use noninformative prior
distribution.

3

Parameter 6, value
w
(4]

N
0

3 4
Parameter 6, value
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Obtained results

Obtained estimates of 6, parameters space dimension is

p=1.

e We get KDE for 0 using samples D;, i = 1,400.
@ While sample size n increases, estimates of 6 concentrates in a
vicinity of true value 6* = 2.

= = =1 = o —
g |7 g |[7 g = 7 ]
25 95% confidence interval é‘ =25 95% confidence interval 9“ =25 95% confidence interval 6|
g i} — True 6* value g ) —True #* value g . —True 6* value
g 2 & 2 g 2 ,
> > > HA
b b = ili
Z15 Z15 Z15 h
[} 3} 15}
o < <
E EN ; N i
= Z a = Al
2 dlY Z ‘A £ I
205 ol 205 i 205 P
o 7 ) <] A |\ [<] /| i
& ; : = / \ = IR
a9 o P | - a9} o v 3, =¥ 0 & |
0 2 3 4 0 1 2 3 4 0 1 2 3
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p=1.

Obtained results

Obtained estimates of @, parameters space dimension is

o We get KDE for 6 using samples D;, i = 1,400.

@ While sample sizen increases, estimates of 8 oncentrates in a

vicinity of true value 6* = 2.
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Obtained results

Theorem statement, p = 6.
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1Do(8 — 8)|)> < 444(x) + O3 (ro, x) + de ™.

0112
2

log | Do (0 - 0)

0 50 100 150 200 250 300
Sample size

Figure : Size of parameters space p = 6
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Obtained results
Critical sample size for Gaussian processes regression

@ The following inequality holds for the sample size n and the
parameters space dimension p is required for BvM theorem to
hold:

n > 4Ctip?

@ We use the following squared exponential covariance function

kg (x,x") —exp( ZG >+025(X x').
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Obtained results
Critical sample size for Gaussian processes regression
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Obtained results
Constants in BvM theorem

g = dif vV TVo B def DO 1‘/02D0_1,
2\/]3A2)\)\1
1
v ﬁHVo 2w d > —[|D5l2,

p5 2 tr(B) < p(v/do)?,vE ¥ 2tr(B2) < 2 (v/do)*,

def
A Y Anax(B) < p(v/do)? e € /&2 — 2p5/3,y2 < pi + 6Apxe,
def

2x. = (3/2g” —pp) /Ap +log | I, — 2B/(3\5) |2,
pB + 2vpxl/?, x <vp/(18\p),
2(B, x) def pB + 6ABX, vp/(18AB) < x < %,

|ye + 2AB(x — x0)/8c|, x> X,
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Obtained results
Constants in BvM theorem

211 (x) def | v4p + 2x, 4p +2x < g2,
H p—
g 'x+3(g Mp+g), 4p+2x>g’
def , 1 373 12 1~
Cs = 4F>\§’>\ +5.5)\—é)\ Mg + F)\)\g,

2
5()def% gdéf 12(\/_ 2)\)\1> ,b :d_(),
\/_d2 \/—)\ 2d

Ofr,x) (J(r) + G%VOZH(X)) r.
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Obtained results
Constants in BvM theorem

Statement

For BvM theorem to hold required sample size has to be

n > 4d3C3rip3.
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