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Geometric foundations of linear classification

Linear discriminant functions

o Classification of two classes wy and w».

@ Linear discriminant function:
T
g(x) =w'x+w

@ Decision rule:

@ Decision boundary B = {x : g(x) = 0} is linear.
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Geometric foundations of linear classification

Linear classification decision regions
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Geometric foundations of linear classification

Reminder

Q@ a=[d",.d°, b=]p", . 6"

@ Scalar product (a,b) =a’b = 25:1 agbp

© o L b means that (a,b) =0

@ Norm ||a|| = +/(a,a)

© Distance p(a,b) = |la — b|| = \/(a— b,a — b)

° p = (a,p) - signed
projection

° p| = ’a, H%II‘_ unsigned
projection length
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Geometric foundations of linear classification

Properties

o Consider arbitrary
glxa) =wlixa+wy=0

XA,XB € B =
g(xg) =wlxg+wy =0

so w' (x4 —xg) =0 and wlB.
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Geometric foundations of linear classification

Distance form origin

@ Distance from the origin to B is equal to absolute value of

the projection of x € B on ”W”

<x? Moasll

@ So p(0,B) = ”'”70” and wq determines the offset from the
origin.
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Geometric foundations of linear classification

Distance from x to B

Denote x| - the projection of x on B, and r = (H—xu,x —x) -
the signed length of the orthogonal complement of x on B:

w
X=X +r—r7

[Iwll

After multiplication by w and addition of wy:

(w, w)
[[wl]

Using w’x + wy = g(x) and w’/x; 4+ wy = 0, we obtain:

wrx—i—woszxL—i—wo—i—r

~g(=x)

[[wl]

So from one side of the hyperplane r > 0 < g(x) > 0, and from

the other side of the hyperplane r < 0 < g(x) < 0.
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Geometric foundations of linear classification

lllustration

*aj

:’C. v

'/ A
g0 »N_x'
Linear decision rule:
SN e

Decision boundary: g(x) = 0, confidence of decision: |g(x)|/ ||w||.
8/41



Linear classification - Victor Kitov

Geometric foundations of linear classification

Multiple classification

@ Popular schemes:

@ one versus all
@ one versus rest

o If only sign is taken into account, they have regions of
ambiguity.
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One versus all - ambiguity

Classification among three classes: w1, wy, w3
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Geometric foundations of linear classification

One versus one - ambiguity

Classification among three classes: w1, wy, w3
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Geometric foundations of linear classification

Multiple classes classification - solution

Classification among w1, wy, ...we.
Use C discriminant functions g.(x) = wlx + wcg

Decision rule:

c(x) = argmax g¢(x)
Cc

Decision boundary between classes w; and wj is linear:

(W,' — wj)Tx—l— (W,‘o — WjO) =0

Decision regions are convex'.

'why? prove that.
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Estimation of error rate from above

Linear discriminant functions

@ Consider binary classification of classes wy and ws.
@ Denote classes wy and wy with y = +1and y = —1.
e Linear discriminant function: g(x) = w’x 4 wy,

Decision rule: y = sign g(x).

Define constant feature xo = 1, then g(x) = w/x = (w, x)

for w = [wo, wy, ..wp]’.

Define the margin M(x,y) = g(x)y

e M(x,y) > 0 <=> object x is correctly classified as y
o |M(x,y)| - confidence of decision
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Estimation of error rate from above

Weights selection

@ Target: minimization of the number of misclassifications Q:

Q(w[X) =D “T[M(xn, yo|w) < 0] — min

@ Problem: standard optimization methods are inapplicable,
because Q(w, X) is discontinuous.
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Estimation of error rate from above

Weights selection

@ Target: minimization of the number of misclassifications Q:

Q(w[X) =D “T[M(xn, yo|w) < 0] — min

@ Problem: standard optimization methods are inapplicable,
because Q(w, X) is discontinuous.

@ Idea: approximate loss function with smooth function L:

I[M(xn, ynlw) < 0] < L(M(xn, yn|w))
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Estimation of error rate from above

Approximation of the target criteria

We obtain the upper boundary on the empirical risk:
QwIX) = > TIM(xy, yulw) < 0]

< 37 L(M(xn, yalw) = F(w)

5:

v

4 Log

QM) = (1-M)?

3 V(IM)=(1-M)y

s 0 S(M) =2(1 +eM)~!
2] L(M) =logy(1 + e~ M)
] _ ,—M

. E(M)=e

0: ——

5 4 3 2 1 0 1 2 3 4 5 M
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Stochastic gradient descend

Optimization

@ Optimization task to obtain the weights:

N
Flw) = Zﬁ((w,x;)y;)amvln

i=1

@ Gradient descend algorithm:

INPUT:
n - parameter, controlling the speed of convergence
stopping rule

ALGORITHM:

initialize wy randomly

while stopping rule is not satisfied:
Wnit < Wy — 7]%
n<n+1
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Gradient descend

@ Possible stopping rules:

o [Wpi1— Wy <e
o |F(Wni1) — F(wn)| <e
@ N > Npax

@ Suboptimal method of minimization in the direction of the
greatest reduction of F(w):

-

F(w)
w,
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Stochastic gradient descend

Recommendations for use

@ Convergence is faster for normalized features

o feature normalization solves the problem of «elongated
valleys»
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Stochastic gradient descend

Convergence acceleration

Stochastic gradient descend method
set the initAiaI approximation wg
calculate F = >"7_, L(M(x;, yilwo))
iteratively until convergence Qgpprox:
@ select random pair (x;, y;)
@ recalculate weights: wyi1 < W, — 1L ({Wn, Xi)yi)Xiyi
© estimate the error: ¢; = L((Wn+1, Xi)Yi)
@ recalculate the loss F = (1- oz)/? + ag;j
Q@ n<n+1
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Stochastic gradient descend

Variants for selecting initial weights

wo=wi=..=wp=0

For logistic £ (because the horizontal asymptotes):

o randomly on the interval [— 5}, 5]

For other functions L:

e randomly

covlx’,y]
var[x']

(these are regression weights, given that X’ are

w; =

uncorrelated?).

Zwhy?
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Stochastic gradient descend

Discussion of SGD

@ Easy to implement

@ Works online

@ A small subset of
learning objects may
be sufficient for
accurate estimation
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Stochastic gradient descend

Discussion of SGD

@ Easy to implement @ Suboptimal - converges to local optimum
@ Works online o Needs selection of 7,:
® A small subset of o too big: divergence
learning objects may o too small: very slow convergence
be sufficient for . .
. @ Overfitting possible for large D and small
accurate estimation

N

@ When L(u) has left horizontal asymptotes
(e.g. logistic), the algorithm may «get
stuck» for large values of (w,x;).
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Stochastic gradient descend

Examples

Delta rule L(M) = (M — 1)?
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Regularization

Regularization for SGD3

L,-regularization for upperbound approximation:
_ D
Fregular/zed (W) _ F(W) + A Z W(Zj
d=1
L4-regularization for upperbound approximation:
D
Fregular/zed(w) =F(w)+ A Z ‘Wd|2
d=1

A is the parameter controlling strength of regularization = model
complexity.

3how will SGD step change? Interpret.
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Regularization

@ General regularization.

Fregularized( W) — O( W) + )\R( W)

@ Examples:

D
Rw) = |wly=)_ Iwdl
d=1
D
Rw) = |wlz=)_ (wa)?
Rw) = alwl+(1—a)llwlz, ac0,1]
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Regularization

L4 norm

o ||w||1 regularizer will do feature selection.
o Consider
n D
Qw) = Liw) +2) |wal
i=1 d=1

e if A > sup,, ‘ag‘%’)

, then it becomes optimal to set w; =0

@ For smaller C more inequalities will become active.
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Regularization

L, norm

o ||w||1 regularizer will do feature selection.
o Consider R(w) = ||wl|3 = 3, w2

n D
Q(w) = Z Li(w) + )\Z w2
i=1 d=1

° %zZW;%OWhenw,-%O.
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Regularization

lllustration

coefficients

Ridge coefficients as a function of the regularization

Lasso and Elastic-Net Paths
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Connection with probabilistic methods

Maximum probability estimation

o X ={x1,x5,..xn}, Y ={y1,Y2,...ys} - training sample of
i.i.d. observations, (x;,y;) ~ p(y|x, w)

@ ML estimation w = argmax, p(Y|X,w)

@ Using independence assumption:

n n
Hp(y,-!x,-, w) = Z Inp(yi|xi, w) — max
=1

i=1

@ Approximated misclassification:

n
> Lg(xi)yilw) — min
i=1
@ Interrelation:

L(g(xi)yilw) = — Inp(yilxi, w)
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Connection with probabilistic methods

Maximum a prosteriori estimation

o X ={x1,x3,..2n}, Y ={y1,Y2, ...ys} - training sample of
i.i.d. observations, (x;,y;) ~ p(x,y|w)

° x; ~ p(x|w)

@ MAP estimation:

e w is random with prior probability p(w)

PIX.Y.w) _ p(X, YIw)p(w)
p(X.Y) p(X.Y)

p(wiX, ¥) = x p(X. Y|w)p(w)

w = argmaxp(w|X, Y) = argmaxp(X, Y|w)p(w)
w w

n
> Inp(xi, yilf) + Inp(w) — max
i=
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Connection with probabilistic methods

Gaussian prior

@ Gaussian prior

1 lwli3 1
|np(W, 0'2) =In <(2ﬂ_0_2)n/ze 202 ) = 2 57 HWH2+C0n$t( )
o Laplace prior

[wllq

Inp(w,C) =In ((22‘)”e_c> = —%Hw[h + const(w)
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Binary classification

@ Linear classifier:

score(w|x) = w'x
@ +relationship between score and class probability is
assumed:
p(wix) = o(w'x)

1

Tre=? - sigmoid function

where o(z) =
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Binary classification: estimation

Using the property 1 — o(z) = o(—z) obtain that
ply = +1]x) = o(wW'x) = p(y = —1|x) = o(~w'x)
So for y € {+1,—-1}
plylx) = o(y(w, x))

Therefore ML estimation can be written as:

N
[]o((w,xi)y;) — max

i=1
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Loss function for 2-class logistic regression

For binary classification p(y|x) = o((w, x)y) w =[5, O],
x=[1,21,x,...2p].

Estimation with ML:

35
n 30
HU(<W7 Xj)yj) — max *
. w 20
i=1 15

which is equivalent to 10 —\
05

n 0 S S N . e

E |n(1 + e—<W71i>Uf) — min 80 25 20 15 10 05 0 05 10 15 20 25 30 \J,
w

!

It follows that logistic regression is linear discriminant estimated
with loss function £(M) = In(1+e™M).
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Logistic regression

SGD realization of logistic regression

Substituting £(M) = In(1+ e~™) into update rule, we obtain that
for each sample (x;, y;) weights should be adapted according to

W w+no(—M;)xiy
Perceptron of Rosenblatt update rule:

W< w+ U]I[M,' < O]x/y;

@ Logistic rule update is the 10

smoothed variant of a8
perceptron’s update. 06
@ The more severe the error o
(according to margin) - the ”
0

more weights are adapted.
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Multiple classes

Multiple class classification:

score(wi)x) = wlx

score(wy|x) = wix

score(wc|x) = wlx
+relationship between score and class probability is assumed:

exp(w/x)

welx) = softmax(w! x xTx,...xTx ==
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Multiple classes

Weights ambiguity:
we, ¢ = 1,2,...C defined up to shift v:

exp(we—v)'x) _ exp(—v'x)exp(wlx)  exp(wlx)

Sexp((wi—v)7z) S exp(—vIx)exp(w/z) ¥ exp(w]x)

To remove ambiguity usually v = w¢ is subtracted.

Estimation with ML:

c—1

H,’Y:1 softmax(wyrnx,,]x{x, xgx) — MaXy,, .w
Wc = 0
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