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ABSTRACT 
In this paper we present a new algorithm for the detection 
of fuzzy patterns in discrete time series. It generalizes the 
known approach by M. Magnusson to T-patterns detection. 
In contrast to the latter, our algorithm is able to find 
patterns where some elements can be absent in some 
occurrences of pattern. This makes possible to find soft 
stereotype in data which seems to be more natural in 
behavioral analysis. 

Author Keywords 
T-Patterns, behavior, fuzzy patterns, elementary behavioral 
acts. 

INTRODUCTION 
The problem of stereotypes detection in the behavior of 
humans and animals is extremely important in cognitive 
research since it allows to measure the complexity of 
behavior in quantitative terms, to monitor behavioral 
changes, etc. Here we focus on one possible approach to 
measuring behavior which is based on pattern detection. 
The behavior is represented as a sequence of events from a 
finite set of event types (e.g. the beginnings of behavioral 
acts) which occur at some moments of time. One or more 
events can occur at one moment of time. A pattern is a 
chain of events which occur one after another quite often. 
Such pattern allows to detect the repeated fragments of 
behavior.  

A popular approach to pattern detection was proposed in [1] 
by Magnusson where the notion of T-pattern was 
established. The main drawback of this approach is the fact 
that patterns are assumed to be crisp, i.e. if at least one 
elements from the chain of events is missing the pattern is 
absent.  

This complicates the process of searching the patterns in 
noisy chaotic data. It seems natural to assume that behavior 

is more complex than just a chain of events and depends on 
many factors that cannot be observed directly. In 
mathematics the traditional way to deal with unknown 
factors which cause influence on the studied process is to 
remove deterministic model with probabilistic one thus 
allowing the dependencies to be fuzzy and to contain the 
element of randomness. In the paper we establish 
probabilistic approach to pattern detection.  

PROPOSED METHOD 
General idea of our approach is based on the algorithm, 
proposed in [1]. It is iterative method, which consists of 
following repeated actions: 

• Test every two patterns from the pattern set, whether 
there is significant co-occurrence among them (second 
pattern often occurs after the first one). If so, then these 
two patterns are joined together and added to the pattern 
set. 

• Remove all duplicates and incomplete patterns from the 
pattern set. 

That process goes on, until no more patterns are found. At 
first iteration the pattern set is a set of pseudo patterns, i.e. 
patterns of length 1. 

Determining Data Types 
Similarly to Magnusson’s model, behavioral data is coded 
during an observation period[1,𝑁𝑡]. At every time moment 
one or more events (behavioral acts) can take place. The set 
of time moments, when event 𝐸𝑖 had appeared, we will 
denote as 𝑖𝑛𝑑(𝐸𝑖). Formally speaking, we are searching for 
the temporal patterns in a discrete signal. 

 
 
______________________________ 
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. For any other use, 
please contact the Measuring Behavior secretariat: 
info@measuringbehavior.org.  Figure 1. Example of pattern A[0;1]B[μ_B;σ_B]C[μ_C;σ_C]. 
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To describe a pattern of length 𝑁, we use 𝑁 pairs of 
parameters, which describe correspondent events: expected 
shift from previous event occurrence and its standard 
deviation (𝜇 and 𝜎).  For the first event  𝜇 = 0 and 𝜎 = 1. 
We will denote the pattern 𝑃, that consists of events 
𝐸1,𝐸2, … ,𝐸𝑁  in the following manner :  

𝑃 = 𝐸1[𝜇1,𝜎1]𝐸2[𝜇2,𝜎2] … 𝐸𝑁[𝜇𝑁,𝜎𝑁]. 

For each pattern 𝑃 of length 𝑁, for every time moment 
𝜀 ∈ [1,𝑁𝑡], we compute the likelihood function 𝐿𝑃 in the 
following way (see Figure 2): 

𝐿𝑃(𝜀) =

= � �
1

√2𝜋𝜎𝑖
�

𝑁

𝑖=1
𝑓𝐿𝑜𝑠𝑠�𝑁−, 𝑁�� exp �−

𝛿𝑖
2

2𝜎𝑖2
�

𝑁+

𝑖=1
, 

𝛿𝑖 = min𝑥∈𝑖𝑛𝑑(𝐸𝑖) �𝜀 + ∑ �𝜇𝑗 + 𝛿𝑗� + 𝜇𝑖 − 𝑥𝑖−1
𝑗=1 �, 

𝑓𝐿𝑜𝑠𝑠(𝑥,𝑁) = �exp �−
𝜆𝑥
𝑁
� , 𝑥 < 𝑁,

0, 𝑥 = 𝑁,
� 

𝑁− + 𝑁+ = 𝑁, 

where 𝑁+ is the number of events, that occurred in the 
pattern at current time moment, 𝑁− is the number of events, 
that are missing in pattern at current time moment, 𝛿𝑖 is 
distance between expected and observed position of 𝑖-th 
event occurrence(see Figure 1). Event is treated as missed, 

if exp �− 𝛿𝑖
2
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2� < exp �𝜆

𝑁
�,  i.e. when 𝛿𝑖 is too big. Here we 

assume that the position of the first event is fixed at 𝜀. 

We can control the level of pattern fuzziness, by 
changing 𝜆: decreasing it, would allow more event gaps in 
pattern (see Figure 3).  

 
The value of likelihood function at time moment 𝜀  can be 
interpreted as level of confidence that given pattern starts at 
that time moment. Finding significant maximums of the 
likelihood function, we can define the moments, when 
pattern begins.  

Note, that we can compute the likelihood function fixing 
any event we want. For example, the likelihood of the 
pattern 𝑃, counted w.r.t. 𝑚-th event, we will denote as  

𝐿𝑃,𝑚(𝜀) = 𝐿𝑃�𝜀 +  ∑ 𝜇𝑗𝑚
𝑗=1 �. 

Detecting Co-Occurrences  
On that step we consider whether two patterns PL and PR 
should be merged to larger pattern. By computing the 
likelihood functions for PL from the end and for PR from the 
beginning, we find significant maximums of these 
likelihoods. Let {𝛼𝑖}, {𝛽𝑗} be the values of the likelihood 

Figure 3. Loss function of pattern of length 𝑵 = 𝟖 
and different  𝝀. 

 

 

Figure 2. Example of likelihood for pattern 
 A[0;1]B[84;3.5]C[54;2.0]D[120;3.2]E[82;2.0]F[16;2.3] 
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maximums and �𝑥𝐿,𝑖 �, �𝑥𝑅,𝑗 �  indexes of these maximums 
for PL and PR respectively. We consider the distances 
between the occurrences of each pattern which are less than 
some predefined threshold 𝑀: 

𝜌 = �𝑥𝑅,𝑗 − 𝑥𝐿,𝑖�0 ≤ 𝑥𝑅,𝑗 − 𝑥𝐿,𝑖 ≤ 𝑀�, 

and used weights to increase the influence of those pattern 
occurrences that better correspond to the statistical model of 
pattern: 

𝑤𝑙 = log (1 + 𝑎𝑖𝛽𝑗). 

Next, we consider the following sum (see Figure 4): 

𝑘 = ∑ 𝑤𝑙
𝑄
𝑙=1 𝑔𝜇,𝜎(𝜌𝑙), 

𝑔𝜇,𝜎(𝜌𝑙), = 𝑒𝑥𝑝 �− (𝜌𝑖−𝜇)2

2𝜎2
�, 

𝑆(𝜎) = 𝜎√2𝜋, 

𝑄 = |𝜌|. 

Here 𝑔𝜇,𝜎(𝜌𝑙) is statistical model of co-occurrence. We are 
trying it on with different  𝜇 and 𝜎, testing if there is a  
significant co-occurrence. Note, that because of 
computational complexity and the assumption that the 
distance between events in pattern should be small, only the 
co-occurrences that are shorter than 𝑀 are considered. 

 

 
Figure 4. The distribution of distances between patterns and 

𝒈𝒊(𝝁,𝝈) which maximizes the expression (1). 

To test the significance of co-occurrences establish null-
hypothesis that the two patterns are independent. Let 

𝑌 = ∑ 𝑋𝑙
𝑄
𝑙=1 , 

𝑋𝑙 = 𝑤𝑙𝑔𝜇,𝜎(𝜌𝑙) = 𝑤𝑙𝑒𝑥𝑝 �−
(𝜌𝑙−𝜇)2

2𝜎2
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Under null-hypothesis: 

• 𝑤 and 𝜌𝑙  are independent random variables, 
• 𝜌𝑙 is uniformly distributed. 𝜌𝑙~𝑈[0,𝑀]. 

Then it can be shown that 

𝑌~𝒩�
∑ 𝑤𝑖
𝑄
𝑖=1
𝑀

𝑆, 1
𝑀2 �𝑀𝑆√2∑ 𝑤𝑖2

𝑄
𝑖=1 −

�∑ 𝑤𝑖
𝑄
𝑖=1 �

2

𝑄
𝑆2��. 

In order to perform test, we maximize the following value, 
using methods from [4]: 

𝑘−𝔼𝑌
√𝔻𝑌

       
��  max

𝜇,𝜎
                            (1) 

If maximum value is greater, then the quantile of normal 
distribution with predefined significance level 𝜔 ∈ [0, 1], 
and the two patterns PL and PR co-occur sufficiently 
frequently, then we make decision that the statistically 
significant co-occurrence PL[𝜇;𝜎]PR takes place. And 
therefore, constructed pattern is added to pattern set. 
Parameter 𝜔 stands for significance of found patterns: the 
closer 𝜔 to 1, the more significant patterns are found.  

While speaking “co-occur sufficiently frequently” we mean, 
that the sum of significant maximums of the likelihood 
function 𝐿PL[𝜇;𝜎]PR(𝜀) is greater than 𝜂. 

Removing Patterns 
Similarly to Magnusson’s approach, our method can 
construct duplicate and incomplete patterns. That is why we 
need some mechanism to eliminate those patterns on each 
step. 

Duplicated Patterns 
The problem is that, one pattern can be constructed from 
different subpatterns. For example, pattern ABCD can be 
detected both by uniting (AB) and (CD), or (A) and (BCD). 
Generally they result to the same patterns, but  due to 
complicated process of uniting, they could have slightly 
different likelihood functions. 

Incomplete Patterns 
While constructing patterns from subpatterns, it’s possible, 
that subpattern only appears as a part of constructed pattern. 
Therefore we don’t need to consider such subpatterns 
independently. For example, if in pattern ABCD, AB just 
doesn’t occur out of ABCD, then we don’t need pattern AB 
in pattern set, and likelihood functions of ABCD and AB 
should be very similar. 

Considering described above examples, simple procedure of 
pattern elimination was proposed. First, let’s define the 
following values: 

𝐿𝑃,𝚤������⃗ =�𝐿𝑃,𝑖(1), … , 𝐿𝑃,𝑖(𝑁𝑡)�  — vector 1×𝑁𝑡 ,  

where 𝐿𝑃,𝑖(𝜀) — is the likelihood function of pattern P, at 
time moment 𝜀, computed with respect to the 𝑖-th event. 𝑁𝑡 
is the length of the time period of the observation. 

𝑐𝑜𝑟�𝐿1���⃗ , 𝐿2����⃗ � = 𝐿1����⃗  𝐿2����⃗
𝑇

 

�𝐿1����⃗  𝐿1����⃗
𝑇�𝐿2����⃗  𝐿2����⃗

𝑇
 𝜖[0,1],  

is the correlation coefficient between likelihoods, therefore, 
the closer it is to 1, the more similar the likelihoods are. 

Procedure of Elimination 
We test every pair of non-pseudo patterns(PL and PR), from 
the pattern set, considering PL as a duplicate or incomplete 
copy of PR. Note that we don’t consider pseudo 
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patterns(single event types), because they may be necessary 
for constructing new patterns. 

The first test deals with duplicate patterns: if PL and PR 
consist of the same events, and 𝑐𝑜𝑟�𝐿𝑃𝐿,1���������⃗ , 𝐿𝑃𝑅,𝑚����������⃗ � > 𝜈 (𝑚 is 
index of the first event of PL in PR), and �𝐿𝑃𝐿,1���������⃗ � ≤
 �𝐿𝑃𝑅,𝑚����������⃗ �, then we remove PL from the pattern set. The 
exclusion of incomplete copies is done in a similar manner. 

In this section we introduced new parameter 𝜈. In our 
experiments, 𝜈 = 0.7 usually worked well. 

Structural Parameters 
The algorithm we derived in the paper has some parameters 
(see Table 1), that should be set manually. However, during 
experiments we discovered that the default values are often 
working well, or alternatively they can be set, according to 
prior information about considered behavioral time series, 
which would improve the performance leading to more 
interpretable patterns 

 
Figure 5. Comparison of the longest detected pattern (in the 

actual data), using T-Patterns (above) and fuzzy patterns 
(below). Gaps are illustrated as circles. Note that fuzzy 

patterns are longer and are observed more often than their 
crisp variants. That happens because of insufficient number of 

pattern occurrences without gaps. 

EXPERIMENTS AND COMPARISION WITH ANOTHER 
METHOD 
To test implemented algorithm on real data, we used 
hamster behavioral data from open field test and recordings 
of grooming. Also we compared proposed algorithm with 
Magnusson’s T-Pattern approach [1].  

Each dataset was presented by set of pairs: event type 
(behavioral act) and time moment at which that event had 
started. Both grooming and open field data had, on average, 
15-30 event types and each event type occurred 20-80 
times. Every following event occurrence defined the end of 
previous event. Figure 5 contains an example of discovered 
fuzzy pattern and the closest T-pattern generated by 
Magnusson’s algorithm on open field test data.  

In general, the set of patterns found by our method 
contained1

In some cases we observed the situation when there were 
many fuzzy patterns that were fuzzy variations of the same 
T-Pattern. This effect could be eliminated by fine parameter 
tuning. Also the longest fuzzy pattern is the extension of the 
discovered T-Pattern, which seems reasonable. 

 almost all patterns that were discovered using T-
Patterns technique. At the same time, it didn’t contain too 
much noisy patterns, which meant, that Fuzzy Patterns 
extended T-Patterns framework in a reasonable way. The 
typical example of the difference between two methods is 
shown in Figure 6. Moreover, fuzzy patterns that 
corresponded to some T-Pattern had greater likelihoods and 
fuzzy analogues of longest T-Patterns were always detected 
by our method.  

 

  
 

Figure 6. Number of patterns found using different methods 
on several real datasets. On the average, Fuzzy patterns 

method finds 93.6% of T-Patterns. 

 
                                                           
1 In general we cannot say definitely that some fuzzy 
pattern corresponds to the specified T-pattern, because of 
different pattern representations. 

Table 1. Main algorithm parameters. 

Parameter Possible 
values 

Default 
value 

Has influence on 

𝜔 [0, 1] 0.95 Significance of 
patterns 

𝜈 [0, 1] 0.7 
How much similar 
patterns should be to 
be eliminated 

M [0,𝑁𝑡] None Length of relations 
that connect patterns. 

𝜂 [0, +∞] 3 Minimal pattern 
occurrences 

𝜆 [0, +∞] 6 Fuzziness of patterns 
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Figure 7. Histogram of pattern lengths. 

CONCLUSION AND FUTURE WORK 
Our proposed method for behavioral time patterns 
discovery, based on fuzzy pattern detection has shown 
promising results. It worked well on synthetic data (both 
when the distances between elements of pattern were 
generated from Gaussian and uniform distributions), and on 
actual data, detecting only those patterns, that were present 
in time series. The experiments show, that our algorithm is 
able to detect longer significant patterns in time series, than 
the algorithm based on T-Pattern detection. Figure 7 shows 
the distribution of the length of patterns found in grooming 
behavioral data. 

Due to method’s statistical roots, some patterns can be 
treated as noise. Also our method is computationally 
complex. The current version, implemented on MATLAB 
works approximately 100 times longer, than the algorithm, 
based on T-Pattern detection. One of the directions for 
future work is parallel implementation of the algorithm on 
multiprocessor computers or on Graphical Processing Units 
(GPUs). 
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