Методы восстановления регрессии

K.B.Воронцов vokov@forecsys.ru

Этот курс доступен на странице вики-ресурса http://www.MachineLearning.ru/wiki «Машинное обучение (курс лекций, К.В.Воронцов)»

3 апреля 2012

Метод наименьших квадратов

- X объекты (часто \mathbb{R}^n); Y ответы (часто \mathbb{R} , реже \mathbb{R}^m); $X^\ell = (x_i, y_i)_{i=1}^\ell$ обучающая выборка; $y_i = y(x_i), \ y: X \to Y$ неизвестная зависимость;
- $a(x) = f(x, \alpha)$ модель зависимости, $\alpha \in \mathbb{R}^p$ вектор параметров модели.
- Метод наименьших квадратов (МНК):

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} w_i (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha},$$

где w_i — вес, степень важности i-го объекта.

 $Q(\alpha^*, X^{\ell})$ — остаточная сумма квадратов (residual sum of squares, RSS).

Метод максимума правдоподобия

Модель данных с некоррелированным гауссовским шумом:

$$y(x_i) = f(x_i, \alpha) + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N}(0, \sigma_i^2), \quad i = 1, \dots, \ell.$$

Метод максимума правдоподобия (ММП):

$$\begin{split} L(\varepsilon_1,\dots,\varepsilon_\ell|\alpha) &= \prod_{i=1}^\ell \frac{1}{\sigma_i\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_i^2}\varepsilon_i^2\right) \to \max_\alpha; \\ &-\ln L(\varepsilon_1,\dots,\varepsilon_\ell|\alpha) = \operatorname{const}(\alpha) + \frac{1}{2}\sum_{i=1}^\ell \frac{1}{\sigma_i^2} \big(f(x_i,\alpha) - y_i\big)^2 \to \min_\alpha; \end{split}$$

Теорема

Решения МНК и ММП, совпадают, причём веса объектов обратно пропорциональны дисперсии шума, $w_i = \sigma_i^{-2}$.

Содержание

- П Непараметрическая регрессия
 - Формула Надарая-Ватсона
 - ullet Выбор ядра K и ширины окна h
 - Отсев выбросов
- Многомерная линейная регрессия
 - Решение задачи наименьших квадратов
 - Сингулярное разложение
 - Регуляризация (гребневая регрессия)
 - Лассо Тибширани
- Метод главных компонент
 - Постановка задачи
 - Основная теорема
 - Решение задачи наименьших квадратов
- 4 Нелинейная регрессия
 - Нелинейная модель регрессии
 - Логистическая регрессия
 - Нелинейные преобразования признаков

Формула Надарая-Ватсона

Приближение константой $a(x) = \alpha$ в окрестности $x \in X$:

$$Q(\alpha; X^{\ell}) = \sum_{i=1}^{\ell} w_i(x) (\alpha - y_i)^2 \to \min_{\alpha \in \mathbb{R}};$$

где $w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$ — веса объектов x_i относительно x; K(r) — gдро, невозрастающее, ограниченное, гладкое; g — ширина окна сглаживания.

Формула ядерного сглаживания Надарая-Ватсона:

$$a_h(x; X^{\ell}) = \frac{\sum\limits_{i=1}^{\ell} y_i \mathbf{w}_i(x)}{\sum\limits_{i=1}^{\ell} \mathbf{w}_i(x)} = \frac{\sum\limits_{i=1}^{\ell} y_i K\left(\frac{\rho(x, x_i)}{h}\right)}{\sum\limits_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)}$$

Обоснование формулы Надарая-Ватсона

Теорема

Пусть выполнены следующие условия:

- 1) выборка $X^{\ell} = (x_i, y_i)_{i=1}^{\ell}$ простая, из распределения p(x, y);
- 2) ядро K(r) ограничено: $\int_0^\infty K(r) dr < \infty$, $\lim_{r \to \infty} rK(r) = 0$;
- 3) зависимость ${\sf E}(y|x)$ не имеет вертикальных асимптот: ${\sf E}(y^2|x) = \int_Y y^2 p(y|x) \; dy < \infty$ при любом $x \in X$;
- 4) последовательность h_ℓ убывает, но не слишком быстро: $\lim_{\ell \to \infty} h_\ell = 0$, $\lim_{\ell \to \infty} \ell h_\ell = \infty$.

Тогда имеет место сходимость по вероятности:

$$a_{h_\ell}(x;X^\ell)\stackrel{P}{ o} \mathsf{E}(y|x)$$
 в любой точке $x\in X$,

в которой E(y|x), p(x) и D(y|x) непрерывны и p(x) > 0.

- Ядро K(r)
 - существенно влияет на гладкость функции $a_h(x)$,
 - слабо влияет на качество аппроксимации.
- Ширина окна h
 - существенно влияет на качество аппроксимации.
- При неравномерной сетке $\{x_i\}$ переменная ширина окна:

$$w_i(x) = K\left(\frac{\rho(x,x_i)}{h(x)}\right),$$

где $h(x) = \rho(x, x^{(k+1)})$, $x^{(k+1)} - k$ -й сосед объекта x.

• Оптимизация ширины окна по скользящему контролю:

$$LOO(h, X^{\ell}) = \sum_{i=1}^{\ell} \left(a_h(x_i; X^{\ell} \setminus \{x_i\}) - y_i \right)^2 \to \min_h.$$

Локально взвешенное сглаживание (LOWESS — LOcally WEighted Scatter plot Smoothing)

Основная идея:

чем больше величина ошибки $\varepsilon_i = |a_h(x_i; X^{\ell} \setminus \{x_i\}) - y_i|$, тем в большей степени прецедент (x_i, y_i) является выбросом, и тем меньше должен быть его вес $w_i(x)$.

Эвристика:

домножить веса $w_i(x)$ на коэффициенты $\gamma_i = \tilde{K}(\varepsilon_i)$, где \tilde{K} — ещё одно ядро, вообще говоря, отличное от K(r).

Рекомендация:

квартическое ядро $\tilde{K}(\varepsilon)=K_Qig(rac{\varepsilon}{6\,\mathrm{med}\{\varepsilon_i\}}ig)$, где $\mathrm{med}\{\varepsilon_i\}$ — медиана вариационного ряда ошибок.

Алгоритм LOWESS

Вход: X^{ℓ} — обучающая выборка; Выход: коэффициенты γ_i , $i=1,\ldots,\ell$;

- 1: инициализация: $\gamma_i := 1, \ i = 1, \ldots, \ell$;
- 2: повторять
- 3: для всех объектов $i = 1, ..., \ell$
- 4: вычислить оценки скользящего контроля:

$$a_i := a_h(x_i; X^{\ell} \setminus \{x_i\}) = \frac{\sum\limits_{j=1, j \neq i}^{\ell} y_j \gamma_j K\left(\frac{\rho(x_i, x_j)}{h(x_i)}\right)}{\sum\limits_{j=1, j \neq i}^{\ell} \gamma_j K\left(\frac{\rho(x_i, x_j)}{h(x_i)}\right)};$$

- 5: для всех объектов $i = 1, ..., \ell$
- 6: $\gamma_i := \tilde{K}(|a_i y_i|);$
- 7: **пока** коэффициенты γ_i не стабилизируются;

Многомерная линейная регрессия

 $f_1(x), \ldots, f_n(x)$ — числовые признаки;

Модель многомерной линейной регрессии:

$$f(x,\alpha) = \sum_{j=1}^{n} \alpha_j f_j(x), \qquad \alpha \in \mathbb{R}^n.$$

Матричные обозначения:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}, \quad y_{\ell \times 1} = \begin{pmatrix} y_1 \\ \dots \\ y_\ell \end{pmatrix}, \quad \alpha_{n \times 1} = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}.$$

Функционал квадрата ошибки:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 = \|F\alpha - y\|^2 \to \min_{\alpha}.$$

Нормальная система уравнений

Необходимое условие минимума в матричном виде:

$$\frac{\partial Q}{\partial \alpha}(\alpha) = 2F^{\mathsf{T}}(F\alpha - y) = 0,$$

откуда следует нормальная система задачи МНК:

$$F^{\mathsf{T}}F\alpha = F^{\mathsf{T}}y,$$

где $F^{\mathsf{\scriptscriptstyle T}}_{n \times n} -$ ковариационная матрица набора признаков f_1, \dots, f_n .

Решение системы:
$$\alpha^* = (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y = F^+y$$
.

Значение функционала:
$$Q(\alpha^*) = \|P_F y - y\|^2$$
,

где
$$P_F = FF^+ = F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}$$
 — проекционная матрица.

Сингулярное разложение

Произвольная $\ell \times n$ -матрица представима в виде сингулярного разложения (singular value decomposition, SVD):

$$F = VDU^{\mathsf{T}}$$
.

Основные свойства сингулярного разложения:

- \bullet $\ell \times n$ -матрица $V = (v_1, \dots, v_n)$ ортогональна, $V^{\mathsf{T}}V = I_n$, столбцы v_j собственные векторы матрицы FF^{T} ;
- ② $n \times n$ -матрица $U = (u_1, \dots, u_n)$ ортогональна, $U^{\mathsf{T}}U = I_n$, столбцы u_i собственные векторы матрицы $F^{\mathsf{T}}F$;
- $n \times n$ -матрица D диагональна, $D = \mathrm{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n})$, $\lambda_j \geqslant 0$ собственные значения матриц $F^\mathsf{T} F$ и FF^T .

Решение МНК через сингулярное разложение

Псевдообратная F^+ , вектор МНК-решения α^* , МНК-аппроксимация целевого вектора $F\alpha^*$:

$$F^{+} = (UDV^{\mathsf{T}}VDU^{\mathsf{T}})^{-1}UDV^{\mathsf{T}} = UD^{-1}V^{\mathsf{T}} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{\mathsf{T}};$$

$$\alpha^{*} = F^{+}y = UD^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} (v_{j}^{\mathsf{T}}y);$$

$$F\alpha^{*} = P_{F}y = (VDU^{\mathsf{T}})UD^{-1}V^{\mathsf{T}}y = VV^{\mathsf{T}}y = \sum_{j=1}^{n} v_{j} (v_{j}^{\mathsf{T}}y);$$

$$\|\alpha^{*}\|^{2} = \|D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} (v_{j}^{\mathsf{T}}y)^{2}.$$

Проблема мультиколлинеарности

Если имеются $\lambda_j o 0$, то

- МНК-решение α^* неустойчиво и неинтерпретируемо: $\|\alpha\| \to \infty$;
- ответы на новых объектах $y' = F'\alpha^*$ неустойчивы;
- в то время как на обучении, казалось бы, «всё хорошо»: $Q(\alpha^*) = \|F\alpha^* y\|^2 \to 0;$
- мультиколлинеарность влечёт переобучение.

Три стратегии устранения мультиколлинеарности:

- Регуляризация: $\|\alpha\| \to \min$;
- ullet Преобразование признаков: $f_1,\ldots,f_n o g_1,\ldots,g_m,\ m\ll n$;
- ullet Отбор признаков: $f_1, \dots, f_n o f_{j_1}, \dots, f_{j_m}, \ m \ll n.$

Регуляризация (гребневая регрессия)

Штраф за увеличение нормы вектора весов $\|\alpha\|$:

$$Q_{\tau}(\alpha) = \|F\alpha - y\|^2 + \frac{1}{2\sigma} \|\alpha\|^2,$$

где $au = rac{1}{\sigma}$ — неотрицательный параметр регуляризации.

Вероятностная интерпретация: априорное распределение вектора α — гауссовское с ковариационной матрицей σI_n .

Модифицированное МНК-решение (τI_n — «гребень»):

$$\alpha_{\tau}^* = (F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}}y.$$

Преимущество сингулярного разложения: можно подбирать параметр au, вычислив SVD только один раз.

Регуляризованный МНК через сингулярное разложение

Вектор регуляризованного МНК-решения $\alpha_{ au}^*$ и МНК-аппроксимация целевого вектора $F\alpha_{ au}^*$:

$$\alpha_{\tau}^{*} = U(D^{2} + \tau I_{n})^{-1}DV^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{\sqrt{\lambda_{j}}}{\lambda_{j} + \tau} u_{j}(v_{j}^{\mathsf{T}}y);$$

$$F\alpha_{\tau}^{*} = VDU^{\mathsf{T}}\alpha_{\tau}^{*} = V\operatorname{diag}\left(\frac{\lambda_{j}}{\lambda_{j} + \tau}\right)V^{\mathsf{T}}y = \sum_{j=1}^{n} \frac{\lambda_{j}}{\lambda_{j} + \tau} v_{j}(v_{j}^{\mathsf{T}}y);$$

$$\|\alpha_{\tau}^{*}\|^{2} = \|D^{2}(D^{2} + \tau I_{n})^{-1}D^{-1}V^{\mathsf{T}}y\|^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j} + \tau} (v_{j}^{\mathsf{T}}y)^{2}.$$

 $Flpha_{ au}^*
eq Flpha^*$, но зато решение становится гораздо устойчивее.

Выбор параметра регуляризации au

Контрольная выборка: $X^k = (x_i', y_i')_{i=1}^k$;

$$F'_{k\times n} = \begin{pmatrix} f_1(x'_1) & \dots & f_n(x'_1) \\ \dots & \dots & \dots \\ f_1(x'_k) & \dots & f_n(x'_k) \end{pmatrix}, \quad y'_{k\times 1} = \begin{pmatrix} y'_1 \\ \dots \\ y'_k \end{pmatrix}.$$

Вычисление функционала Q на контрольных данных T раз потребует $O(kn^2+knT)$ операций:

$$Q(\alpha_{\tau}^*, X^k) = \|F'\alpha_{\tau}^* - y'\|^2 = \left\|\underbrace{F'U}_{k \times n} \operatorname{diag}\left(\frac{\sqrt{\lambda_j}}{\lambda_j + \tau}\right) \underbrace{V^{\mathsf{T}}y}_{n \times 1} - y'\right\|^2.$$

Зависимость $Q(\tau)$ обычно имеет характерный минимум.

Регуляризация сокращает «эффективную размерность»

Сжатие (shrinkage) или сокращение весов (weight decay):

$$\|\alpha_{\tau}^*\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j + \tau} (v_j^{\mathsf{T}} y)^2 < \|\alpha^*\|^2 = \sum_{j=1}^n \frac{1}{\lambda_j} (v_j^{\mathsf{T}} y)^2.$$

Почему говорят о сокращении эффективной размерности?

Роль размерности играет след проекционной матрицы:

$$\operatorname{tr} F(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}} = \operatorname{tr}(F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}F = \operatorname{tr} I_n = n.$$

При использовании регуляризации:

$$\operatorname{tr} F(F^{\mathsf{T}}F + \tau I_n)^{-1}F^{\mathsf{T}} = \operatorname{tr} \operatorname{diag} \left(\frac{\lambda_j}{\lambda_j + \tau}\right) = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \tau} < n.$$

Лассо Тибширани — другой подход к регуляризации LASSO — Least Absolute Shrinkage and Selection Operator

$$\begin{cases} Q(\alpha) = \|F\alpha - y\|^2 \to \min_{\alpha}; \\ \sum_{j=1}^{n} |\alpha_j| \leqslant \varkappa; \end{cases}$$

Лассо приводит к отбору признаков! Почему?

После замены переменных

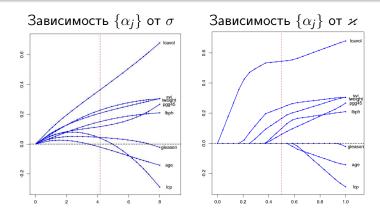
$$\begin{cases} \alpha_j = \alpha_j^+ - \alpha_j^-; \\ |\alpha_j| = \alpha_j^+ + \alpha_j^-; \end{cases} \quad \alpha_j^+ \geqslant 0; \quad \alpha_j^- \geqslant 0.$$

ограничения принимают канонический вид:

$$\sum_{i=1}^{n} \alpha_j^+ + \alpha_j^- \leqslant \varkappa; \quad \alpha_j^+ \geqslant 0; \quad \alpha_j^- \geqslant 0.$$

Чем меньше \varkappa , тем больше j таких, что $\alpha_i^+=\alpha_i^-=0$.

Сравнение гребневой регрессии и Лассо



Задача диагностики рака (prostate cancer, UCI)

T.Hastie, R.Tibshirani, J.Friedman. The Elements of Statistical Learning. Springer, 2001.

Метод главных компонент: постановка задачи

$$f_1(x), \dots, f_n(x)$$
 — исходные числовые признаки; $g_1(x), \dots, g_m(x)$ — новые числовые признаки, $m \leqslant n$;

Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \quad j=1,\ldots,n, \quad \forall x \in X,$$

как можно точнее на обучающей выборке x_1, \ldots, x_ℓ :

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} \left(\hat{f}_j(x_i) - f_j(x_i)\right)^2 \rightarrow \min_{\{g_s(x_i)\}, \{u_{js}\}}$$

Матричные обозначения

Матрицы «объекты-признаки», старая и новая:

$$F_{\ell \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_\ell) & \dots & f_n(x_\ell) \end{pmatrix}; \quad G_{\ell \times m} = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_\ell) & \dots & g_m(x_\ell) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$U_{n\times m} = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix}; \qquad \hat{F} = GU^{\mathsf{T}} \overset{\mathsf{XOTUM}}{\approx} F.$$

Найти: и новые признаки G, и преобразование U:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{\mathsf{T}} - F\|^{2} \to \min_{G,U},$$

Основная теорема метода главных компонент

Теорема

Если $m \leqslant \operatorname{rk} F$, то минимум $\|GU^{\mathsf{T}} - F\|^2$ достигается, когда столбцы U — это с.в. матрицы $F^{\mathsf{T}}F$, соответствующие m максимальным с.з. $\lambda_1, \ldots, \lambda_m$, а матрица G = FU.

При этом:

- $oldsymbol{0}$ матрица U ортонормирована: $U^{\mathsf{T}}U = I_m$;
- $oldsymbol{Q}$ матрица G ортогональна: $G^{\mathsf{T}}G = \Lambda = \mathsf{diag}(\lambda_1, \dots, \lambda_m)$;
- $\|GU^{\mathsf{T}} F\|^2 = \|F\|^2 \operatorname{tr} \Lambda = \sum_{j=m+1}^n \lambda_j.$

Связь с сингулярным разложением

Если взять m = n, то:

- ② представление $\hat{F} = GU^{\mathsf{T}} = F$ точное и совпадает с сингулярным разложением при $G = V\sqrt{\Lambda}$:

$$F = GU^{\mathsf{T}} = V\sqrt{\Lambda}U^{\mathsf{T}}; \quad U^{\mathsf{T}}U = I_m; \quad V^{\mathsf{T}}V = I_m.$$

 \odot линейное преобразование U работает в обе стороны:

$$F = GU^{\mathsf{T}}; \quad G = FU.$$

Поскольку новые признаки некоррелированы ($G^{\mathsf{T}}G = \Lambda$), преобразование U называется декоррелирующим (или преобразованием Карунена–Лоэва).

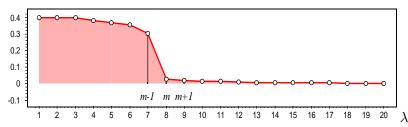
Эффективная размерность выборки

Упорядочим с.з. $F^{\mathsf{T}}F$ по убыванию: $\lambda_1 \geqslant \ldots \geqslant \lambda_n \geqslant 0$.

Эффективная размерность выборки — это наименьшее целое m, при котором

$$E_m = \frac{\|GU^{\mathsf{T}} - F\|^2}{\|F\|^2} = \frac{\lambda_{m+1} + \dots + \lambda_n}{\lambda_1 + \dots + \lambda_n} \leqslant \varepsilon.$$

Kритерий «крутого склона»: находим m: $E_{m-1}\gg E_m$:



Решение задачи НК в новых признаках

Заменим F на её приближение GU^{T} :

$$\|G\underbrace{U^{\mathsf{T}}\alpha}_{\beta} - y\|^2 = \|G\beta - y\|^2 \to \min_{\beta}.$$

Связь нового и старого вектора коэффициентов:

$$\alpha = U\beta; \qquad \beta = U^{\mathsf{T}}\alpha.$$

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^{\mathsf{T}}y = \sum_{j=1}^{m} \frac{1}{\sqrt{\lambda_j}} u_j(v_j^{\mathsf{T}}y);$$

$$G\beta^* = VV^{\mathsf{T}}y = \sum_{j=1}^{\mathbf{m}} v_j(v_j^{\mathsf{T}}y);$$

Нелинейная модель регрессии

Нелинейная модель регрессии $f(x, \alpha)$, $\alpha \in \mathbb{R}^p$. Функционал среднеквадратичного отклонения:

$$Q(\alpha, X^{\ell}) = \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i)^2 \to \min_{\alpha}.$$

Метод Ньютона-Рафсона.

- 1. Начальное приближение $\alpha^0 = (\alpha_1^0, \dots, \alpha_p^0)$.
- 2. Итерационный процесс

$$\alpha^{t+1} := \alpha^t - \eta_t (Q''(\alpha^t))^{-1} Q'(\alpha^t),$$

 $Q'(\alpha^t)$ — градиент функционала Q в точке α^t , $Q''(\alpha^t)$ — гессиан функционала Q в точке α^t , η_t — величина шага (можно полагать $\eta_t=1$).

Метод Ньютона-Рафсона

Компоненты градиента:

$$\frac{\partial Q(\alpha)}{\partial \alpha_j} = 2 \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i) \frac{\partial f(x_i, \alpha)}{\partial \alpha_j}.$$

Компоненты гессиана:

$$\frac{\partial^2 Q(\alpha)}{\partial \alpha_j \partial \alpha_k} = 2 \sum_{i=1}^{\ell} \frac{\partial f(x_i, \alpha)}{\partial \alpha_j} \frac{\partial f(x_i, \alpha)}{\partial \alpha_k} - 2 \sum_{i=1}^{\ell} (f(x_i, \alpha) - y_i) \frac{\partial^2 f(x_i, \alpha)}{\partial \alpha_j \partial \alpha_k}.$$

при линеаризации полагается = 0

Не хотелось бы обращать гессиан на каждой итерации...

Линеаризация $f(x_i, \alpha)$ в окрестности текущего α^t :

$$f(x_i, \alpha) = f(x_i, \alpha^t) + \sum_{i=1}^p \frac{\partial f(x_i, \alpha_j)}{\partial \alpha_j} (\alpha_j - \alpha_j^t) + o(\alpha_j - \alpha_j^t).$$

Метод Ньютона-Гаусса

Матричные обозначения:

$$F_t = \left(rac{\partial f}{\partial lpha_j}(x_i, lpha^t)
ight)_{i=1,\ell}^{j=1,p} - \ell imes p$$
-матрица первых производных; $f_t = \left(f(x_i, lpha^t)
ight)_{i=1,\ell} -$ вектор значений f .

Формула t-й итерации метода Ньютона–Гаусса:

$$\alpha^{t+1} := \alpha^t - h_t \underbrace{(F_t^\mathsf{T} F_t)^{-1} F_t^\mathsf{T} (f^t - y)}_{\beta}.$$

eta — это решение задачи многомерной линейной регрессии

$$||F_t\beta-(f^t-y)||^2\to \min_{\beta}.$$

Нелинейная регрессия сведена к серии линейных регрессий.

Скорость сходимости — как и у метода Ньютона-Рафсона, но для вычислений можно применять стандартные методы.

Логистическая регрессия (напоминание)

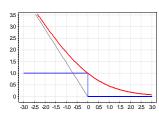
$$Y = \{-1, +1\}$$
 — два класса, $x_i, w \in \mathbb{R}^n$.

Функционал аппроксимированного эмпирического риска:

$$Q(w) = -\sum_{i=1}^{\ell} \log \sigma(w^{\mathsf{T}} x_i y_i) o \min_{w},$$

где $\sigma(z) = (1 + e^{-z})^{-1}$ — сигмоидная функция.

Логарифмическая функция потерь $\mathscr{L}(M_i) = \log(1 + e^{-M_i})$



$$M_i = w^{\mathsf{T}} x_i y_i$$

Метода Ньютона-Рафсона

Метода Ньютона-Рафсона для минимизации функционала Q(w):

$$w^{t+1} := w^t - h_t(Q''(w^t))^{-1}Q'(w^t),$$

Элементы градиента — вектора первых производных $Q'(w^t)$:

$$\frac{\partial Q(w)}{\partial w_i} = -\sum_{i=1}^{\ell} (1 - \sigma_i) y_i f_j(x_i), \quad j = 1, \ldots, n.$$

Элементы гессиана — матрицы вторых производных $Q''(w^t)$:

$$\frac{\partial^2 Q(w)}{\partial w_j \partial w_k} = \sum_{i=1}^{\ell} (1 - \sigma_i) \sigma_i f_j(x_i) f_k(x_i), \quad j, k = 1, \dots, n,$$

где
$$\sigma_i = \sigma(y_i w^{\mathsf{T}} x_i)$$
.

Матричные обозначения

$$F_{\ell imes n} = \left(f_j(x_i)\right)$$
 — матрица «объекты—признаки»; $\Gamma_{\ell imes \ell} = \mathrm{diag}\left(\sqrt{(1-\sigma_i)\sigma_i}\right)$ — диагональная матрица; $ilde{F} = \Gamma F$ — взвешенная матрица «объекты—признаки»; $ilde{y}_i = y_i\sqrt{(1-\sigma_i)/\sigma_i}, \ \ ilde{y} = (ilde{y}_i)_{i=1}^\ell$ — взвешенный вектор ответов.

Тогда в методе Ньютона-Рафсона:

$$\left(Q''(w)\right)^{-1}Q'(w) = -(F^{\mathsf{T}}\Gamma^2F)^{-1}F^{\mathsf{T}}\Gamma\tilde{y} = -(\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}\tilde{y} = -\tilde{F}^+\tilde{y}.$$

Это совпадает с МНК-решением линейной задачи регрессии со взвешенными объектами и модифицированными ответами:

$$Q(w) = \|\tilde{F}w - \tilde{y}\|^2 = \sum_{i=1}^{\ell} (1 - \sigma_i)\sigma_i \left(w^{\mathsf{T}}x - \frac{y_i}{\sigma_i}\right)^2 \to \min_{w}.$$

Интерпретация

На каждом шаге метода Ньютона-Рафсона решается задача многомерной линейной регрессии:

$$Q(w) = \sum_{i=1}^{\ell} (1 - \sigma_i) \sigma_i \left(w^{\mathsf{T}} x - \frac{y_i}{\sigma_i} \right)^2 o \min_{w}.$$

Интерпретация:

- σ_i вероятность правильного ответа на объекте x_i ;
- чем ближе x_i к границе, тем больше вес $(1 \sigma_i)\sigma_i$;
- чем выше вероятность ошибки, тем больше y_i/σ_i .

ВЫВОД: на каждой итерации происходит более точная настройка на «наиболее трудных» объектах.

MHK с итерационным перевзвешиванием объектов IRLS — Iteratively Reweighted Least Squares

Вход: F, y — матрица «объекты—признаки» и вектор ответов; Выход: w — вектор коэффициентов линейной комбинации.

- 1: $w := (F^{\mathsf{T}}F)^{-1}F^{\mathsf{T}}y$ нулевое приближение, обычный МНК;
- 2: для $t := 1, 2, 3, \dots$
- 3: $\sigma_i = \sigma(y_i w^\mathsf{T} x_i)$ для всех $i = 1, \ldots, \ell$;
- 4: $\gamma_i := \sqrt{(1-\sigma_i)\sigma_i}$ для всех $i=1,\ldots,\ell$;
- 5: $\tilde{F} := \operatorname{diag}(\gamma_1, \ldots, \gamma_\ell) F$;
- 6: $\tilde{y}_i := y_i \sqrt{(1-\sigma_i)/\sigma_i}$ для всех $i=1,\ldots,\ell$;
- 7: выбрать градиентный шаг h_t ;
- 8: $w := w + h_t(\tilde{F}^{\mathsf{T}}\tilde{F})^{-1}\tilde{F}^{\mathsf{T}}\tilde{y};$
- 9: **если** $\{\sigma_i\}$ мало изменились **то** выйти из цикла;

Обобщение линейной модели регрессии

Пусть $\varphi_j \colon \mathbb{R} \to \mathbb{R}$ — некоторые нелинейные преобразования исходных признаков. Модель регрессии:

$$f(x,\alpha) = \sum_{j=1}^{n} \varphi_{j}(f_{j}(x)).$$

В частности, при $arphi_j(f_j(x))=lpha_jf_j(x)$ это линейная регрессия.

ИДЕЯ: будем по очереди уточнять функции φ_j по обучающей выборке $\left(f_j(x_i), z_i\right)_{i=1}^\ell$:

$$Q(\varphi_j, X^{\ell}) = \sum_{i=1}^{\ell} \left(\varphi_j(f_j(x_i)) - \underbrace{\left(y_i - \sum_{k=1, k \neq j}^{n} \varphi_k(f_k(x_i)) \right)}_{z_i = \mathsf{const}(\varphi_i)} \right)^2 \to \min_{\varphi_j}.$$

Метод backfitting [Хасти, Тибширани, 1986]

Вход: F, y — матрица «объекты—признаки» и вектор ответов; Выход: $\varphi_i(x)$ — все функции преобразования признаков.

- 1: нулевое приближение:
 - $\alpha :=$ решение задачи МЛР с признаками $f_i(x)$;

$$\varphi_j(x) := \alpha_j f_j(x), \quad j = 1, \ldots, n;$$

- 2: повторять
- 3: для $j = 1, \ldots, n$
- 4: $z_i := y_i \sum_{k=1, k \neq j}^n \varphi_k(f_k(x_i)), \quad i = 1, \ldots, \ell;$
- 5: $arphi_j := rg \min_{arphi} \sum_{i=1}^\ell ig(arphi(f_j(x)) z_i ig)^2;$ одномерная регрессия
- 6: $Q_j := \sum_{i=1}^{\ell} (\varphi_j(f_j(x)) z_i)^2;$
- 7: **пока** значения Q_i не стабилизируются

Резюме в конце лекции

- Непараметрическая регрессия сглаживание функций
- Многомерная линейная регрессия сингулярное разложение
- Гребневая регрессия сингулярное разложение
- Метод главных компонент ещё один способ избавления от близких к 0 сингулярных чисел
- Нелинейная регрессия сводится к последовательности линейных