Composite optimization for the resource allocation problem

Anastasiya Ivanova

Moscow Institute of Physics and Technology anastasiya.s.ivanova@phystech.edu

joint work with P. Dvurechensky and A. Gasnikov

IDP 2018

Problem statement. Primal problem.

There is a Center and n producers which produce one product.

 $f_k(x_k), k = 1, \ldots, n - \text{cost functions};$

 $x_k \in \mathbb{R}$ — the volume of product produced by the producer k in one year;

 y_k – the volume of product which is purchased from the producer k; C – the lower bound for the total production volume per year by all producers.

Problem statement. Primal problem.

There is a Center and n producers which produce one product.

 $f_k(x_k), k = 1, \ldots, n - \text{cost functions};$

 $x_k \in \mathbb{R}$ — the volume of product produced by the producer k in one year;

 y_k – the volume of product which is purchased from the producer k; C – the lower bound for the total production volume per year by all producers.

$$(P) f(\mathbf{x}) = \sum_{k=1}^{n} f_k(x_k) \to \min_{\substack{\sum \\ y_k \geqslant 0, \ x_k \geqslant 0, \ k=1, \dots, n, \\ y_k \geqslant 0, \ x_k \geqslant 0, \ k=1, \dots, n, \\ }$$

where cost functions $f_k(x_k)$ $k=1,\ldots,n$ are increasing and μ -strongly convex.

Problem statement. Dual problem.

Introducing dual variables p_k , k = 1, ..., n and using the duality theory, we obtain the dual problem (up to a sign)

$$(D) \qquad \varphi(p) = \sum_{k=1}^{n} \left\{ p_k x_k(p_k) - f_k(x_k(p_k)) \right\} - C \min_{k=1, \dots, n} p_k \to \min_{p \geqslant 0}$$

where

$$x_k(p_k) = \operatorname*{argmax}_{\substack{x_k \geqslant 0}} \left\{ p_k x_k - f_k(x_k) \right\}, \quad k = 1, 2, \ldots, n.$$

Subgradient method for the resource allocation

Input: $\varepsilon > 0$ – accuracy, p^0 – starting point.

- 1. Set the stepsize $h = \frac{\varepsilon}{nC^2}$.
- 2. Given the price vector p^t for the current year, producers calculate the optimal production plan for these prices as

$$x_k(p_k^t) = \operatorname*{argmax}_{x_k \geqslant 0} \left\{ p_k^t x_k - f_k(x_k) \right\}, \quad k = 1, 2, \ldots, n.$$

and communicates this information to the Center.

- 3. The Center determines the shares of purchases for each producer, i.e. forms a vector $\lambda(\mathbf{p}^t)$ as $\lambda^t = (\lambda_1^t, \ldots, \lambda_n^t)^\top$, where $\sum_{k=1}^n \lambda_k^t = 1$, $\lambda_k^t \geqslant 0$ if $k \in \operatorname{Arg\ min} p_j$ and $\lambda_k^t = 0$, if $k \notin \operatorname{Arg\ min} p_j^t$ and sends this vector to all factories.
- 4. Each factory adjusts the price for the next year as follows

$$p^{t+1} = (p^t - h(x(p^t) - C\lambda(p^t)))_{+}.$$

Convergence rate

To state the convergence rate result, we need introduce an upper bound for the optimal value of the prices.

Lemma 1

Let the p^* be a solution to the dual problem (D). Then

$$\|\mathbf{p}^*\|_2 \leqslant \sqrt{n} p_{max}.$$

where

$$p_{max} := \frac{n}{C} \left(\sum_{k=1}^{n} f_k \left(\frac{2C}{n} \right) - \sum_{k=1}^{n} f_k(0) \right). \tag{1}$$

Convergence rate

Theorem 1

Let Algorithm 1 be run with starting point p^0 satisfying $0 \le p_k^0 \le p_{max}, \ k=1,\ldots, \ n$ for

$$N = \left\lceil \frac{164(Cnp_{max})^2}{\varepsilon^2} \right\rceil$$

steps. Then

$$f(\mathbf{x}^N) - f(\mathbf{x}^*) \leqslant \varepsilon, \ C - \sum_{k=1}^n x_k^N \leqslant \frac{\varepsilon}{3p_{max}},$$
 (2)

where
$$\mathbf{x}^N = \frac{1}{N} \sum_{t=0}^{N-1} \mathbf{x}(\mathbf{p}^t)$$
.

Composite gradient method for the resource allocation problem

The problem (D) can be rewritten as

$$\varphi(p_1,\ldots,p_n)=\psi(p_1,\ldots,p_n)+g(p_1,\ldots,p_n),$$

where

$$\psi(p_1, \ldots, p_n) = \sum_{k=1}^n \left\{ p_k x_k(p_k) - f_k(x_k(p_k)) \right\} = \langle p, x(p) \rangle - f(x(p))$$

is convex function, which gradient satisfies Lipschitz condition

$$\left\|\nabla\psi(\mathbf{p}^{1})-\nabla\psi(\mathbf{p}^{2})\right\|_{2}\leqslant L_{\psi}\left\|\mathbf{p}^{1}-\mathbf{p}^{2}\right\|_{2},\ \forall\,\mathbf{p}^{1},\mathbf{p}^{2}\geqslant0,$$

where $L_{\psi}=rac{n}{\mu}$ and

$$g(p_1, \ldots, p_n) = -C \min_{k=1,\ldots,n} p_k$$

is convex non smooth function.

General composite projected gradient method

Input: N > 0 – number of steps, L_{ψ} – Lipschitz constant of gradient ψ , p^0 – starting point.

1. Find

$$x_k(p_k^t) = \operatorname*{argmax}_{x_k \geqslant 0} \left\{ p_k^t x_k - f_k(x_k)
ight\}, \quad k = 1, 2, \ldots, n.$$

2. Do the step

$$\mathbf{p}^{t+1} = \operatorname*{argmin}_{\mathbf{p} \geqslant \mathbf{0}} \left\{ \left\langle \nabla \psi(\mathbf{p}^t), \mathbf{p} - \mathbf{p}^t \right\rangle - C \min_{k=1, \ldots, n} p_k + \frac{L_{\psi}}{2} \left\| \mathbf{p} - \mathbf{p}^t \right\|_2^2 \right\}$$

Step of the composite gradient method

Lemma 2

Let $\tilde{\mathbf{p}}^{t+1} = \mathbf{p}^t - \frac{1}{L_{ab}}\mathbf{x}(\mathbf{p}^t)$. Then \mathbf{p}^{t+1} in (2) is defined as follows

▶ If
$$\sum\limits_{k=1}^{n}\left(- ilde{p}_{k}^{t+1}
ight)_{+}>rac{C}{L_{\psi}}$$
 then $p_{center}^{t+1}=0$ and

$$p_k^{t+1} = \max(0, \, \tilde{p}_k^{t+1}), \, k = 1, \dots, n.$$

▶ Else $p_{center}^{t+1} > 0$ is a solution of equation

$$\sum_{k=1}^{n} \left(p_{center}^{t+1} - \tilde{p}_{k}^{t+1} \right)_{+} = \frac{C}{L_{\psi}}$$

and

$$p_k^{t+1} = \max\left(p_{center}^{t+1}, \ \tilde{p}_k^{t+1}\right), \ k = 1, \dots, n.$$

Step of the composite gradient method

Note that the step also can be rewritten as

$$\mathbf{p}^{t+1} = \left[\mathbf{p}^t - \frac{1}{L_{\psi}} \left(\mathbf{x}(\mathbf{p}^t) - C\lambda(\mathbf{p}^{t+1}) \right) \right]_+,$$

where $\lambda(p^{t+1})$ is such that $\sum\limits_{k=1}^n \lambda_k(p_k^{t+1}) = 1, \; \lambda_k(p_k^{t+1}) \geqslant 0$ if

 $k \in \underset{j=1,\ldots,n}{\operatorname{Arg \; min}} p_j^{t+1} \text{ and } \lambda_k(p_k^{t+1}) = 0, \text{ if } k \notin \underset{j=1,\ldots,n}{\operatorname{Arg \; min}} p_j^{t+1}.$

By Lemma 2, the solution of step can be written as

$$\mathbf{p}^{t+1} = \left[\tilde{\mathbf{p}}^{t+1} + \frac{C}{L_{\psi}} \lambda(\mathbf{p}^{t+1}) \right]_{+},$$

where

$$\lambda_k(p_k^{t+1}) = \frac{L_{\psi}}{C} \left(p_{center}^{t+1} - \tilde{p}_k^{t+1} \right)_+.$$

Input: N > 0 – number of steps, L_{ψ} – Lipschitz constant, p^0

1. Knowing the prices p_k^t producers calculate the optimal plan

$$x_k(p_k^t) = \operatorname*{argmax}_{x_k \geqslant 0} \left\{ p_k^t x_k - f_k(x_k) \right\}, \quad k = 1, 2, \ldots, n.$$

2. The Center forms a prediction for the lowest possible prices

$$\tilde{p}_k^{t+1} = p_k^t - \frac{1}{L_{th}} x_k(p_k^t), \quad k = 1, 2, \ldots, n.$$

- 3. The Center determines the price p_{center}^{t+1}
 - ▶ If $\sum_{k=1}^{n} \left(-\tilde{p}_k^{t+1} \right)_+ > \frac{C}{L_{\psi}}$ then $p_{center}^{t+1} = 0$;
 - ▶ Else $p_{center}^{t+1} > 0$ and solves equaltion

$$\sum_{k=1}^{n} \left(p_{center}^{t+1} - \tilde{p}_{k}^{t+1} \right)_{+} = \frac{C}{L_{\psi}}$$

4. Each producer adjusts the price for the next year as follows

$$p_k^{t+1} = \max\left(p_{center}^{t+1}, \, \tilde{p}_k^{t+1}\right), \, k = 1, \ldots, n.$$

Convergence rate

Theorem 2

Let Algorithm 2 be run for N steps with starting point p^0 satisfying $0 \le p_k^0 \le p_{max}$, $k = 1, \ldots, n$, where p_{max} is given in (1). Then

$$f(\mathbf{x}^{N}) - f(\mathbf{x}^{*}) \leqslant f(\mathbf{x}^{N}) + \varphi(\mathbf{p}^{*}) \leqslant \varphi(\mathbf{p}^{N}) + f(\mathbf{x}^{N}) \leqslant \frac{82p_{\max}^{2}n^{2}}{N\mu},$$

$$\left[C - \sum_{k=1}^{n} x_{k}^{N}\right]_{+} \leqslant \frac{82p_{\max}n^{2}}{3N\mu}$$

where
$$p^N = \frac{1}{N} \sum_{t=1}^N p^t$$
 and $x^N = \frac{1}{N} \sum_{t=0}^{N-1} x(p^t)$.

References

- Gasnikov A. Universal gradient descent. arXiv preprint arXiv:1711.00394
- Ivanova A., Dvurechensky P., Gasnikov A. Composite optimization for the resource allocation problem. arXiv preprint arXiv:1810.00595
- Nesterov Yu. Primal-dual subgradient methods for convex problems. Math. Program. Ser. B. 2009. V. 120(1). P. 261–283.
- Nesterov Yu., Shikhman V. Distributed Price Adjustment Based on Convex Analysis. J. Optimization Theory and Applications 172(2): 594-622 (2017)

Thank you!