
Backpropagation

Deep Learning Concepts

Sergey Ivanov (617)

qbrick@mail.ru

September 16, 2019

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 1 / 26



Backpropagation

1 Backpropagation
Putting some pieces together
Vector differentiation
Backpropagation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 2 / 26



Backpropagation

Backpropagation
Putting some pieces together

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 3 / 26



Backpropagation

Motivation to discuss again

to have another view on vector differentiation
to draw some connections between different subjects
highlight theory we (implicitly?) utilize

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 26



Backpropagation

Motivation to discuss again

to have another view on vector differentiation
to draw some connections between different subjects
highlight theory we (implicitly?) utilize

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 26



Backpropagation

Motivation to discuss again

to have another view on vector differentiation
to draw some connections between different subjects
highlight theory we (implicitly?) utilize

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4 / 26



Backpropagation

Finite vector spaces

Theorem

All n-dimensional vector spaces1 are isomorphic

1over same field (in our case — R)
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 5 / 26



Backpropagation

Key task!

f (x) : Rn → R

f (x)→ min
x

Alternative view:

How can we for some x0 find x so that f (x) < f (x0)?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 26



Backpropagation

Key task!

f (x) : Rn → R

f (x)→ min
x

Alternative view:

How can we for some x0 find x so that f (x) < f (x0)?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 26



Backpropagation

Key task!

f (x) : Rn → R

f (x)→ min
x

Alternative view:

How can we for some x0 find x so that f (x) < f (x0)?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 6 / 26



Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 26



Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 26



Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous

(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 26



Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 26



Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 26



Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 7 / 26



Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?

n = 1: g(x) = kx for some k ∈ R
Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1: Riesz Representation Theorem

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 26



Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?
n = 1:

g(x) = kx for some k ∈ R
Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1: Riesz Representation Theorem

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 26



Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?
n = 1: g(x) = kx for some k ∈ R

Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1: Riesz Representation Theorem

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 26



Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?
n = 1: g(x) = kx for some k ∈ R

Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1: Riesz Representation Theorem

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 26



Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?
n = 1: g(x) = kx for some k ∈ R

Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1:

Riesz Representation Theorem

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 26



Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?
n = 1: g(x) = kx for some k ∈ R

Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1: Riesz Representation Theorem

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8 / 26



Backpropagation

Riesz Representation Theorem

Riesz Theorem2 (for finite vector spaces)

Every linear function g : Rn → R can be represented as
g(x) =

∑n
i xiyi for some y ∈ Rn

2proof is relatively simple
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 26

https://proofwiki.org/wiki/Riesz_Representation_Theorem_(Hilbert_Spaces)


Backpropagation

Riesz Representation Theorem

Riesz Theorem2 (for finite vector spaces)

Every linear function g : Rn → R can be represented as
g(x) =

∑n
i xiyi for some y ∈ Rn

2proof is relatively simple
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 26

https://proofwiki.org/wiki/Riesz_Representation_Theorem_(Hilbert_Spaces)


Backpropagation

Riesz Representation Theorem

Riesz Theorem2 (for finite vector spaces)

Every linear function g : Rn → R can be represented as
g(x) =

∑n
i xiyi for some y ∈ Rn

2proof is relatively simple
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 26

https://proofwiki.org/wiki/Riesz_Representation_Theorem_(Hilbert_Spaces)


Backpropagation

Linearization

Let x0 ∈ Rn be given point.

f (x)− f (x0)︸ ︷︷ ︸
change in function

= g(x − x0)︸ ︷︷ ︸
linear part
(differential)

+ h(x − x0)︸ ︷︷ ︸
approximation

error

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 10 / 26



Backpropagation

Linearization

Let x0 ∈ Rn be given point.

f (x)− f (x0)︸ ︷︷ ︸
change in function

= g(x − x0)︸ ︷︷ ︸
linear part
(differential)

+ h(x − x0)︸ ︷︷ ︸
approximation

error

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 10 / 26



Backpropagation

Linearization

Let x0 ∈ Rn be given point.

f (x)− f (x0)︸ ︷︷ ︸
change in function

= g(x − x0)︸ ︷︷ ︸
linear part
(differential)

+ h(x − x0)︸ ︷︷ ︸
approximation

error

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 10 / 26



Backpropagation

Linearization

Let x0 ∈ Rn be given point.

f (x)− f (x0)︸ ︷︷ ︸
change in function

= g(x − x0)︸ ︷︷ ︸
linear part
(differential)

+ h(x − x0)︸ ︷︷ ︸
approximation

error

Using Riesz theorem:
for some ∇f ∈ Rn called gradient:

g(x − x0) = 〈x − x0,∇f 〉

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 10 / 26



Backpropagation

Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x − x0).

Consider some direction x = x0 + αd , α ∈ R, d ∈ Rn:

f (x0 + αd)− f (x0) = α〈d ,∇f 〉+ h(αd)

Using some 1d calculus:

lim
α→0

α〈d ,∇f 〉+ h(αd)

α
= 〈d ,∇f 〉+ lim

α→0

h(αd)
α =

= {1d Taylor theorem} = 〈d ,∇f 〉+ 0 = 〈d ,∇f 〉

if 〈d ,∇f 〉 < 0, there is α > 0:
f (x0 + αd)− f (x0) < 0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 26



Backpropagation

Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x − x0).

Consider some direction x = x0 + αd , α ∈ R, d ∈ Rn:

f (x0 + αd)− f (x0) = α〈d ,∇f 〉+ h(αd)

Using some 1d calculus:

lim
α→0

α〈d ,∇f 〉+ h(αd)

α
= 〈d ,∇f 〉+ lim

α→0

h(αd)
α =

= {1d Taylor theorem} = 〈d ,∇f 〉+ 0 = 〈d ,∇f 〉

if 〈d ,∇f 〉 < 0, there is α > 0:
f (x0 + αd)− f (x0) < 0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 26



Backpropagation

Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x − x0).

Consider some direction x = x0 + αd , α ∈ R, d ∈ Rn:

f (x0 + αd)− f (x0) = α〈d ,∇f 〉+ h(αd)

Using some 1d calculus:

lim
α→0

α〈d ,∇f 〉+ h(αd)

α
= 〈d ,∇f 〉+ lim

α→0

h(αd)
α

=

= {1d Taylor theorem} = 〈d ,∇f 〉+ 0 = 〈d ,∇f 〉

if 〈d ,∇f 〉 < 0, there is α > 0:
f (x0 + αd)− f (x0) < 0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 26



Backpropagation

Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x − x0).

Consider some direction x = x0 + αd , α ∈ R, d ∈ Rn:

f (x0 + αd)− f (x0) = α〈d ,∇f 〉+ h(αd)

Using some 1d calculus:

lim
α→0

α〈d ,∇f 〉+ h(αd)

α
= 〈d ,∇f 〉+ lim

α→0

h(αd)
α =

= {1d Taylor theorem} = 〈d ,∇f 〉+ 0 = 〈d ,∇f 〉

if 〈d ,∇f 〉 < 0, there is α > 0:
f (x0 + αd)− f (x0) < 0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 26



Backpropagation

Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x − x0).

Consider some direction x = x0 + αd , α ∈ R, d ∈ Rn:

f (x0 + αd)− f (x0) = α〈d ,∇f 〉+ h(αd)

Using some 1d calculus:

lim
α→0

α〈d ,∇f 〉+ h(αd)

α
= 〈d ,∇f 〉+ lim

α→0

h(αd)
α =

= {1d Taylor theorem} = 〈d ,∇f 〉+ 0 = 〈d ,∇f 〉

if 〈d ,∇f 〉 < 0, there is α > 0:
f (x0 + αd)− f (x0) < 0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 11 / 26



Backpropagation

Gradient Descent

How to choose direction d?{
g(x − x0)→ min

x

ρ(x , x0) ≤ ε

⇐ intuition: «trust region»

Standard choice of ρ: ρ(x , x0) :=
√
〈x − x0, x − x0〉

Solution: x − x0 ∝ −∇f

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 26



Backpropagation

Gradient Descent

How to choose direction d?{
g(x − x0)→ min

x

ρ(x , x0) ≤ ε ⇐ intuition: «trust region»

Standard choice of ρ: ρ(x , x0) :=
√
〈x − x0, x − x0〉

Solution: x − x0 ∝ −∇f

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 26



Backpropagation

Gradient Descent

How to choose direction d?{
g(x − x0)→ min

x

ρ(x , x0) ≤ ε ⇐ intuition: «trust region»

Standard choice of ρ: ρ(x , x0) :=
√
〈x − x0, x − x0〉

Solution: x − x0 ∝ −∇f

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 26



Backpropagation

Gradient Descent

How to choose direction d?{
g(x − x0)→ min

x

ρ(x , x0) ≤ ε ⇐ intuition: «trust region»

Standard choice of ρ: ρ(x , x0) :=
√
〈x − x0, x − x0〉

Solution: x − x0 ∝ −∇f

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 12 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.


f1(x)− f1(x0) = g1(x − x0) + h1(x − x0)

f2(x)− f2(x0) = g2(x − x0) + h2(x − x0)
...
fm(x)− fm(x0) = gm(x − x0) + hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = g1(x − x0) + h1(x − x0)

f2(x)− f2(x0) = g2(x − x0) + h2(x − x0)
...
fm(x)− fm(x0) = gm(x − x0) + hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = g1(x − x0) + h1(x − x0)

f2(x)− f2(x0) = g2(x − x0) + h2(x − x0)
...
fm(x)− fm(x0) = gm(x − x0) + hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = 〈x − x0,∇f1〉+ h1(x − x0)

f2(x)− f2(x0) = 〈x − x0,∇f2〉+ h2(x − x0)
...
fm(x)− fm(x0) = 〈x − x0,∇fm〉+ hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = 〈x − x0,∇f1〉+ h1(x − x0)

f2(x)− f2(x0) = 〈x − x0,∇f2〉+ h2(x − x0)
...
fm(x)− fm(x0) = 〈x − x0,∇fm〉+ hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Comparing jacobian and differential

jacobian differential

Dimensions m × n m

Depends on x0 x0, x − x0

Question: what to do if argument or value of function is matrix?

Rn×m ∼= Rnm

Corollary

Let A,B ∈ Rn×m

〈A,B〉Rn×m = 〈A.flatten(),B .flatten()〉Rnm = tr(BTA)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 26



Backpropagation

Comparing jacobian and differential

jacobian differential

Dimensions m × n m

Depends on x0 x0, x − x0

Question: what to do if argument or value of function is matrix?

Rn×m ∼= Rnm

Corollary

Let A,B ∈ Rn×m

〈A,B〉Rn×m = 〈A.flatten(),B .flatten()〉Rnm = tr(BTA)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 26



Backpropagation

Comparing jacobian and differential

jacobian differential

Dimensions m × n m

Depends on x0 x0, x − x0

Question: what to do if argument or value of function is matrix?

Rn×m ∼= Rnm

Corollary

Let A,B ∈ Rn×m

〈A,B〉Rn×m = 〈A.flatten(),B .flatten()〉Rnm = tr(BTA)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 26



Backpropagation

Comparing jacobian and differential

jacobian differential

Dimensions m × n m

Depends on x0 x0, x − x0

Question: what to do if argument or value of function is matrix?

Rn×m ∼= Rnm

Corollary

Let A,B ∈ Rn×m

〈A,B〉Rn×m = 〈A.flatten(),B .flatten()〉Rnm

= tr(BTA)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 26



Backpropagation

Comparing jacobian and differential

jacobian differential

Dimensions m × n m

Depends on x0 x0, x − x0

Question: what to do if argument or value of function is matrix?

Rn×m ∼= Rnm

Corollary

Let A,B ∈ Rn×m

〈A,B〉Rn×m = 〈A.flatten(),B .flatten()〉Rnm = tr(BTA)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 15 / 26



Backpropagation

Backpropagation
Vector differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 16 / 26



Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?

how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.
3 construct complex functions using composition
4 apply chain rule!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 26



Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?
how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.
3 construct complex functions using composition
4 apply chain rule!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 26



Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?
how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.
3 construct complex functions using composition
4 apply chain rule!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 26



Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?
how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.

3 construct complex functions using composition
4 apply chain rule!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 26



Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?
how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.
3 construct complex functions using composition

4 apply chain rule!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 26



Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?
how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.
3 construct complex functions using composition
4 apply chain rule!

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 17 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...

element-wise operations
examples: x + y , x ∗ y , x

y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Chain Rule: setting

Given:

y(x) : Rn → Rm with jacobian ∇xy ∈ Rm×n at point x0
z(y) : Rm → Rk with jacobian ∇yz ∈ Rk×m at point y0

the task is to find jacobian ∇xz ∈ Rk×n of function

z(x) = z(y(x)) : Rn → Rk

at point x0.

Centralize everything:

∆x = x − x0

∆y = y − y0

∆z = z − z0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 26



Backpropagation

Chain Rule: setting

Given:

y(x) : Rn → Rm with jacobian ∇xy ∈ Rm×n at point x0
z(y) : Rm → Rk with jacobian ∇yz ∈ Rk×m at point y0

the task is to find jacobian ∇xz ∈ Rk×n of function

z(x) = z(y(x)) : Rn → Rk

at point x0.

Centralize everything:

∆x = x − x0

∆y = y − y0

∆z = z − z0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 26



Backpropagation

Chain Rule: setting

Given:

y(x) : Rn → Rm with jacobian ∇xy ∈ Rm×n at point x0
z(y) : Rm → Rk with jacobian ∇yz ∈ Rk×m at point y0

the task is to find jacobian ∇xz ∈ Rk×n of function

z(x) = z(y(x)) : Rn → Rk

at point x0.

Centralize everything:

∆x = x − x0

∆y = y − y0

∆z = z − z0

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 19 / 26



Backpropagation

Chain Rule for jacobians

∆y = ∇xy∆x + ¯̄o(∆x)

∆z = ∇yz∆y + ¯̄o(∆y)

∆z = ∇xz∆x + ¯̄o(∆x)

Insert first in second:

∆z = ∇yz∇xy∆x +∇yz ¯̄o(∆x) + ¯̄o(∇xy∆x + ¯̄o(∆x)) =

= ∇yz∇xy∆x + ¯̄o(∆x)

Chain rule for jacobians

∇xz = ∇yz∇xy

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 20 / 26



Backpropagation

Chain Rule for jacobians

∆y = ∇xy∆x + ¯̄o(∆x)

∆z = ∇yz∆y + ¯̄o(∆y)

∆z = ∇xz∆x + ¯̄o(∆x)

Insert first in second:

∆z = ∇yz∇xy∆x +∇yz ¯̄o(∆x) + ¯̄o(∇xy∆x + ¯̄o(∆x))

=

= ∇yz∇xy∆x + ¯̄o(∆x)

Chain rule for jacobians

∇xz = ∇yz∇xy

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 20 / 26



Backpropagation

Chain Rule for jacobians

∆y = ∇xy∆x + ¯̄o(∆x)

∆z = ∇yz∆y + ¯̄o(∆y)

∆z = ∇xz∆x + ¯̄o(∆x)

Insert first in second:

∆z = ∇yz∇xy∆x +∇yz ¯̄o(∆x) + ¯̄o(∇xy∆x + ¯̄o(∆x)) =

= ∇yz∇xy∆x + ¯̄o(∆x)

Chain rule for jacobians

∇xz = ∇yz∇xy

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 20 / 26



Backpropagation

Chain Rule for jacobians

∆y = ∇xy∆x + ¯̄o(∆x)

∆z = ∇yz∆y + ¯̄o(∆y)

∆z = ∇xz∆x + ¯̄o(∆x)

Insert first in second:

∆z = ∇yz∇xy∆x +∇yz ¯̄o(∆x) + ¯̄o(∇xy∆x + ¯̄o(∆x)) =

= ∇yz∇xy∆x + ¯̄o(∆x)

Chain rule for jacobians

∇xz = ∇yz∇xy

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 20 / 26



Backpropagation

Chain Rule for differentials

∆y = Dxy [∆x ] + ¯̄o(∆x)

∆z = Dyz [∆y ] + ¯̄o(∆y)

∆z = Dxz [∆x ] + ¯̄o(∆x)

Insert first in second:

∆z = Dyz [Dxy [∆x ]] + Dyz [¯̄o(∆x)] + ¯̄o(Dxy [∆x ] + ¯̄o(∆x)) =

= Dyz [Dxy [∆x ]] + ¯̄o(∆x)

Chain rule for differentials

Dxz [∆x ] = Dyz [Dxy [∆x ]]

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 / 26



Backpropagation

Chain Rule for differentials

∆y = Dxy [∆x ] + ¯̄o(∆x)

∆z = Dyz [∆y ] + ¯̄o(∆y)

∆z = Dxz [∆x ] + ¯̄o(∆x)

Insert first in second:

∆z = Dyz [Dxy [∆x ]] + Dyz [¯̄o(∆x)] + ¯̄o(Dxy [∆x ] + ¯̄o(∆x))

=

= Dyz [Dxy [∆x ]] + ¯̄o(∆x)

Chain rule for differentials

Dxz [∆x ] = Dyz [Dxy [∆x ]]

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 / 26



Backpropagation

Chain Rule for differentials

∆y = Dxy [∆x ] + ¯̄o(∆x)

∆z = Dyz [∆y ] + ¯̄o(∆y)

∆z = Dxz [∆x ] + ¯̄o(∆x)

Insert first in second:

∆z = Dyz [Dxy [∆x ]] + Dyz [¯̄o(∆x)] + ¯̄o(Dxy [∆x ] + ¯̄o(∆x)) =

= Dyz [Dxy [∆x ]] + ¯̄o(∆x)

Chain rule for differentials

Dxz [∆x ] = Dyz [Dxy [∆x ]]

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 / 26



Backpropagation

Chain Rule for differentials

∆y = Dxy [∆x ] + ¯̄o(∆x)

∆z = Dyz [∆y ] + ¯̄o(∆y)

∆z = Dxz [∆x ] + ¯̄o(∆x)

Insert first in second:

∆z = Dyz [Dxy [∆x ]] + Dyz [¯̄o(∆x)] + ¯̄o(Dxy [∆x ] + ¯̄o(∆x)) =

= Dyz [Dxy [∆x ]] + ¯̄o(∆x)

Chain rule for differentials

Dxz [∆x ] = Dyz [Dxy [∆x ]]

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 21 / 26



Backpropagation

Chain Rule intuition

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 / 26



Backpropagation

Chain Rule intuition

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 / 26



Backpropagation

Chain Rule intuition

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 22 / 26



Backpropagation

Backpropagation
Backpropagation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 23 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o = ∇y1L∆y1 +∇y2L∆y2 + ¯̄o =

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o =

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o = ∇y1L∆y1 +∇y2L∆y2 + ¯̄o =

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o =

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o =

∇y1L∆y1 +∇y2L∆y2 + ¯̄o =

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o =

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o = ∇y1L∆y1 +∇y2L∆y2 + ¯̄o

=

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o =

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o = ∇y1L∆y1 +∇y2L∆y2 + ¯̄o =

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o

=

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o = ∇y1L∆y1 +∇y2L∆y2 + ¯̄o =

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o =

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 25 / 26



Backpropagation

Arbitrary graphs

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 26



Backpropagation

Arbitrary graphs

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 26



Backpropagation

Arbitrary graphs

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 26



Backpropagation

Arbitrary graphs

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 26



Backpropagation

Arbitrary graphs

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 26 / 26


	Backpropagation
	Putting some pieces together
	Vector differentiation
	Backpropagation


