Deep Learning Concepts

Sergey Ivanov (617)

gbrick®@mail.ru

September 16, 2019

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 1/26



Backpropagation
m Putting some pieces together
m Vector differentiation
m Backpropagation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 2/26



Backpropagation
9000000000000

Backpropagation

Putting some pieces together

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 3/26



Backpropagation
0Oe00000000000

Motivation to discuss again

m to have another view on vector differentiation
m to draw some connections between different subjects
m highlight theory we (implicitly?) utilize

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4/ 26



Backpropagation
0Oe00000000000

Motivation to discuss again

m to have another view on vector differentiation
m to draw some connections between different subjects
m highlight theory we (implicitly?) utilize

@ ALGEBRAIC
STRUCTURES

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4/ 26



Backpropagation
0Oe00000000000

Motivation to discuss again

m to have another view on vector differentiation
m to draw some connections between different subjects
m highlight theory we (implicitly?) utilize

ALGEBRAIC
STRUCTURES

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 4/ 26



Backpropagation
[e]e] leleleleleleleloo]e]

Finite vector spaces

Theorem

1

All n-dimensional vector spaces” are isomorphic

over same field (in our case — R)
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Optimization step concept

Let f(x) = g(x) + h(x), where:
m g(x) is something simple that can be easily optimized

m h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(@) gx+y)=g(x) +ely) Vx,y €R”

X some are discontinuous
(b) g(ax) =ag(x) VaeR,VxeR"
x some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!
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Backpropagation
0O0000e0000000

Linear functions

g:R" >R
gx+y)=gx)+gly)
g(ax) = ag(x)

Question: How this class of functions can be described?

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8/ 26



Backpropagation
0O0000e0000000

Linear functions

g:R" >R
gx+y)=gx)+gly)
g(ax) = ag(x)

Question: How this class of functions can be described?
mn=1:

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8/ 26



Backpropagation
0O0000e0000000

Linear functions

g:R" >R
gx+y)=gx)+gly)
g(ax) = ag(x)

Question: How this class of functions can be described?
m n=1: g(x) = kx for some k € R

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8/ 26



Backpropagation
0O0000e0000000

Linear functions

g:R" >R
gx+y)=gx)+gly)
g(ax) = ag(x)
Question: How this class of functions can be described?

m n=1: g(x) = kx for some k € R
m Proof: g(x) = g(x-1) = xg(1) = {k:=g(1)} = kx

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8/ 26



Backpropagation
0O0000e0000000

Linear functions

g:R" >R
gx+y)=gx)+gly)
g(ax) = ag(x)
Question: How this class of functions can be described?

m n=1: g(x) = kx for some k € R
m Proof: g(x) = g(x-1) = xg(1) = {k:=g(1)} = kx

mn>1:

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 8/ 26



Backpropagation
0O0000e0000000

Linear functions

g:R" >R
gx+y)=gx)+gly)
g(ax) = ag(x)
Question: How this class of functions can be described?

m n=1: g(x) = kx for some k € R
m Proof: g(x) = g(x-1) = xg(1) = {k:=g(1)} = kx

m n > 1: Riesz Representation Theorem
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Riesz Representation Theorem

Riesz Theorem? (for finite vector spaces)

Every linear function g : R” — R can be represented as
g(x) = > 7 xiyi for some y € R”

2proof is relatively simple
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9/ 26


https://proofwiki.org/wiki/Riesz_Representation_Theorem_(Hilbert_Spaces)

Backpropagation
0000008000000

Riesz Representation Theorem

Riesz Theorem? (for finite vector spaces)

Every linear function g : R” — R can be represented as
g(x) = > 7 xiyi for some y € R”

2proof is relatively simple
Sergey Ivanov (617) Deep Learning Concepts


https://proofwiki.org/wiki/Riesz_Representation_Theorem_(Hilbert_Spaces)

Backpropagation
0000008000000

Riesz Representation Theorem

Riesz Theorem? (for finite vector spaces)

Every linear function g : R” — R can be represented as
g(x) = > 7 xiyi for some y € R”

fix,y)= —5x+3y

2proof is relatively simple
Sergey Ivanov (617) Deep Learning Concepts
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Linearization

Let xo € R" be given point.
f(x) = f(x0) =g(x—x0)+ h(x—x)
—_— —_——  ——

change in function linear part approximation
(differential) error
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Linearization

Let xo € R" be given point.
f(x) = f(x0) =g(x—x0)+ h(x—x)
—_— —_——  ——

change in function linear part approximation
(differential) error

Using Riesz theorem:
for some Vf € R" called gradient:

Bx—0)= (-9,

S X\
R*
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Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x — xo).
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Consider some direction x = xg + ad, a € R, d € R"™:

f(xo + ad) — f(x0) = a{d, V) + h(ad)
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Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x — xo).

Consider some direction x = xg + ad, a € R, d € R"™:
f(xo + ad) — f(x0) = a(d, Vf) + h(ad)
Using some 1d calculus:

i a(d,Vf) + h(ad)
ozl—n;]O o

= {1d Taylor theorem} = (d,Vf)+ 0= (d,Vf)

«

= (d,Vf) + lim hed)
a—0

if (d,Vf) <0, there is o > 0:
F(x0 + ad) — f(xo) < 0
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Gradient Descent

How to choose direction d?
g(x — xp) — min
X

p(x,x0) < €
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Gradient Descent

How to choose direction d?

g(x — xp) — min
X

p(x,x0) < e < intuition: «trust region»

Standard choice of p: p(x,xp) := \/<x — X0, X — X0)
Solution: x — xg o« —=VFf
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Generalization

Consider f : R?" — R™,
A(x) — A(x0) = (x — x0, VA) + h1(x — x0)
f(x) — fa(x0) = (x — x0, Vi2) + ha(x — x0)

'fm(x) — fm(x0) = (x = x0, Vm) + hm(x — x0)

where all g; are linear.

’ Just m different functions R” — R ‘
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Generalization

Consider f : R?" — R™,
A(x) — A(x0) = (x — x0, VA) + h1(x — x0)
f(x) — fa(x0) = (x — x0, V2) + ha(x — x0)

'fm(x) — fm(x0) = (x — x0, Vm) + hm(x — x0)

where all g; are linear.

’ Just m different functions R” — R ‘

Corollary

All linear functions R" — R™ are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 /26
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Jacobian

Define by Vf € R™*" a matrix of component gradients:
f(x) — f(xo) = VFf - (x — x0) +h(x — x0)
N————

Df [x—xo]
differential
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Define by Vf € R™*" a matrix of component gradients:
f(x) — f(xo) = VFf - (x — x0) +h(x — x0)
N————

Df [x—xo]
differential
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jacobian | differential

Dimensions mxn m

Depends on X0 X0, X — Xg
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jacobian | differential

Dimensions mxn m

Depends on X0 X0, X — Xg

Question: what to do if argument or value of function is matrix?

Rnxm ~ an

Corollary
Let A, B € R"™m

(A, B)gnxm = (A.flatten(), B.flatten())gom
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Comparing jacobian and differential

jacobian | differential

Dimensions mxn m

Depends on X0 X0, X — Xg

Question: what to do if argument or value of function is matrix?

Rnxm ~ an

Corollary
Let A, B € R"™m

(A, B)goxm = (Aflatten(), B.flatten())gmm = tr(BT A)
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Backpropagation

Vector differentiation
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Constructing complex functions

m what functions R” — R do we know?

m how to automatically calculate their gradient?

find some primitive building blocks R” — R™
find their jacobians/differentials analytically.
construct complex functions using composition
apply chain rule!
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Building blocks

Let x,y € R" be input vector.

m element-wise application ("map") of some scalar function.
= examples: e, x?, x+ 1, 1.
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Building blocks

Let x,y € R" be input vector.

m element-wise application ("map") of some scalar function.
= examples: e, x?, x+ 1, 1.
m element-wise operations
m examples: x +y, x*y, f
m scalar product
m examples: (x,y), Ax
m accumulating ("reduce") operations
m examples: sum/max/min of all components
m something special
m examples: matrix inverse
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Chain Rule: setting

Given:

y(x) : R" — R™ with jacobian V,y € R™*" at point xp
z(y) : R™ — Rk with jacobian V,z € R**™ at point yp
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Chain Rule: setting

Given:

y(x) : R" — R™ with jacobian V,y € R™*" at point xp
z(y) : R™ — Rk with jacobian V,z € R**™ at point yp

the task is to find jacobian V,z € R¥*" of function
z(x) = z(y(x)) : R" — R¥
at point xg.

Centralize everything:

Ax = x — xp

Ay =y —yo
Az=z—2z
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Chain Rule for jacobians

Ay = VyyAx + 6(Ax)
Az =V ,zAy + o(Ay)
Az = V,zAx + 6(Ax)
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Chain Rule for jacobians

Ay = VyyAx + 6(Ax)
Az =V ,zAy + o(Ay)
Az = V,zAx + 6(Ax)

Insert first in second:

Az =V ,zV,yAx + V,z0(Ax) + o(ViyAx + 0(Ax))
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Backpropagation

[e]e]e]e] lele)

Chain Rule for jacobians

Ay = VyyAx + 6(Ax)
Az =V ,zAy + o(Ay)
Az = V,zAx + 6(Ax)

Insert first in second:

Az =V, zV,yAx + V,z0(Ax) + o(VxyAx + 0(Ax)) =
=V, zV,yAx + o(Ax)

Chain rule for jacobians

Vxz=V,zV,y
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Chain Rule for differentials

Ay = Dyy[Ax] + o(Ax)
Az = Dyz[Ay] + 6(Ay)
Az = D,z[Ax] + 6(Ax)
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Chain Rule for differentials

Ay = Dyy[Ax] + o(Ax)
Az = Dyz[Ay] + 6(Ay)
Az = D,z[Ax] + 6(Ax)

Insert first in second:

Az = D, z[Dyy[Ax]] + Dyz[6(Ax)] + o( Dxy[Ax] + 0(Ax))
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Ay = Dyy[Ax] + o(Ax)

Az = Dyz[Ay] + 6(Ay)

Az = D,z[Ax] + 6(Ax)
Insert first in second:

Az = D, z[Dyy[Ax]] + Dyz[6(Ax)] + 6(Dxy[Ax] + 0(Ax)) =
= Dyz[D,y[Ax]] 4+ o(Ax)
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Backpropagation

0000080

Chain Rule for differentials

Ay = Dyy[Ax] + o(Ax)

Az = Dyz[Ay] + 6(Ay)

Az = D,z[Ax] + 6(Ax)
Insert first in second:

Az = D, z[Dyy[Ax]] + Dyz[6(Ax)] + 6(Dxy[Ax] + 0(Ax)) =
= Dyz[D,y[Ax]] 4+ o(Ax)

Chain rule for differentials

Dyz[Ax] = Dy z[Dxy[AX]]
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Backpropagation
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Chain Rule intuition
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Automatic differentiation

COMPUTATIONAL GRAPH
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Backpropagation

Automatic differentiation

COMPUTATIONAL GRAPH

Ut m
P« e R" /4 y(x) YyER

LeR

X0 FORWARD | 4,
PASS

Viy
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Backpropagation

Automatic differentiation

COMPUTATIONAL GRAPH

Ut m
L x € R4 y(X) YyER

LeR

X0 FORWARD | 4,
PASS

VoL &Vx¥<~V,L
BACKWARD PASS
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Backpropagation

Automatic differentiation

COMPUTATIONAL GRAPH

Ut m
W x € R4 y(X) YER

LeR

X0 FORWARD | 4,
PASS

VxL = VyLny ny VyL
BACKWARD PASS
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Parallel computations
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Backpropagation
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Parallel computations

Let y = [y1, y2]:
AL=V,LAy+0
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Parallel computations

Vy, LV, y, Vy, L

Let y = [y1,2]:
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Parallel computations

Let y = [y1, y2]:
AL=V, LAy +06=V, LAy +V,LAy+0=
= Vyl LV, y1 Ax + Vy2 LV yo Ax + )
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Backpropagation

[e]e] o]

Parallel computations

Let y = [y1, y2]:
AL=V,LAy+5=V, LAy + VY, LAy, + 5 =
=V, LV 1 DAx + VLV Ax + 6 =
= (Vy, LVyy1 + V), LV, ) Ax + 0
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Backpropagation
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Arbitrary graphs

X L(y1, x)
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Arbitrary graphs

L(y1,y2)
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Arbitrary graphs

L(y1,y2)

H
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