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Backpropagation

Motivation to discuss again

to have another view on vector differentiation
to draw some connections between different subjects
highlight theory we (implicitly?) utilize
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Backpropagation

Finite vector spaces

Theorem

All n-dimensional vector spaces1 are isomorphic

1over same field (in our case — R)
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Backpropagation

Key task!

f (x) : Rn → R

f (x)→ min
x

Alternative view:

How can we for some x0 find x so that f (x) < f (x0)?
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Backpropagation

Optimization step concept

Idea:

Let f (x) = g(x) + h(x), where:
g(x) is something simple that can be easily optimized
h(x) is something that we can neglect

What simple class of functions g(x) to consider?
(a) g(x + y) = g(x) + g(y) ∀x , y ∈ Rn

× some are discontinuous
(b) g(αx) = αg(x) ∀α ∈ R,∀x ∈ Rn

× some are discontinuous (n > 1)

Consider (a) + (b) and everything will work out!
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Backpropagation

Linear functions

g : Rn → R

g(x + y) = g(x) + g(y)

g(αx) = αg(x)

Question: How this class of functions can be described?

n = 1: g(x) = kx for some k ∈ R
Proof: g(x) = g(x · 1) = xg(1) = {k := g(1)} = kx

n ≥ 1: Riesz Representation Theorem
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Backpropagation

Riesz Representation Theorem

Riesz Theorem2 (for finite vector spaces)

Every linear function g : Rn → R can be represented as
g(x) =

∑n
i xiyi for some y ∈ Rn

2proof is relatively simple
Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 9 / 26

https://proofwiki.org/wiki/Riesz_Representation_Theorem_(Hilbert_Spaces)
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Backpropagation

Linearization

Let x0 ∈ Rn be given point.

f (x)− f (x0)︸ ︷︷ ︸
change in function

= g(x − x0)︸ ︷︷ ︸
linear part
(differential)

+ h(x − x0)︸ ︷︷ ︸
approximation

error
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Backpropagation

Linearization

Let x0 ∈ Rn be given point.

f (x)− f (x0)︸ ︷︷ ︸
change in function

= g(x − x0)︸ ︷︷ ︸
linear part
(differential)

+ h(x − x0)︸ ︷︷ ︸
approximation

error

Using Riesz theorem:
for some ∇f ∈ Rn called gradient:

g(x − x0) = 〈x − x0,∇f 〉
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Backpropagation

Descent

For some class of functions f («differentiable») we can say
something about approximation error h(x − x0).

Consider some direction x = x0 + αd , α ∈ R, d ∈ Rn:

f (x0 + αd)− f (x0) = α〈d ,∇f 〉+ h(αd)

Using some 1d calculus:

lim
α→0

α〈d ,∇f 〉+ h(αd)

α
= 〈d ,∇f 〉+ lim

α→0

h(αd)
α =

= {1d Taylor theorem} = 〈d ,∇f 〉+ 0 = 〈d ,∇f 〉

if 〈d ,∇f 〉 < 0, there is α > 0:
f (x0 + αd)− f (x0) < 0
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Backpropagation

Gradient Descent

How to choose direction d?{
g(x − x0)→ min

x

ρ(x , x0) ≤ ε

⇐ intuition: «trust region»

Standard choice of ρ: ρ(x , x0) :=
√
〈x − x0, x − x0〉

Solution: x − x0 ∝ −∇f
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Backpropagation

Generalization

Consider f : Rn → Rm.


f1(x)− f1(x0) = g1(x − x0) + h1(x − x0)

f2(x)− f2(x0) = g2(x − x0) + h2(x − x0)
...
fm(x)− fm(x0) = gm(x − x0) + hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = g1(x − x0) + h1(x − x0)

f2(x)− f2(x0) = g2(x − x0) + h2(x − x0)
...
fm(x)− fm(x0) = gm(x − x0) + hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = g1(x − x0) + h1(x − x0)

f2(x)− f2(x0) = g2(x − x0) + h2(x − x0)
...
fm(x)− fm(x0) = gm(x − x0) + hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = 〈x − x0,∇f1〉+ h1(x − x0)

f2(x)− f2(x0) = 〈x − x0,∇f2〉+ h2(x − x0)
...
fm(x)− fm(x0) = 〈x − x0,∇fm〉+ hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Generalization

Consider f : Rn → Rm.
f1(x)− f1(x0) = 〈x − x0,∇f1〉+ h1(x − x0)

f2(x)− f2(x0) = 〈x − x0,∇f2〉+ h2(x − x0)
...
fm(x)− fm(x0) = 〈x − x0,∇fm〉+ hm(x − x0)

where all gi are linear.

Just m different functions Rn → R!

Corollary

All linear functions Rn → Rm are

g(x) = Ax

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 13 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Jacobian

Define by ∇f ∈ Rm×n a matrix of component gradients:

f (x)− f (x0) = ∇f · (x − x0)︸ ︷︷ ︸
Df [x−x0]
differential

+h(x − x0)

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 14 / 26



Backpropagation

Comparing jacobian and differential

jacobian differential

Dimensions m × n m

Depends on x0 x0, x − x0

Question: what to do if argument or value of function is matrix?

Rn×m ∼= Rnm

Corollary

Let A,B ∈ Rn×m

〈A,B〉Rn×m = 〈A.flatten(),B .flatten()〉Rnm = tr(BTA)
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Backpropagation

Backpropagation
Vector differentiation
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Backpropagation

Constructing complex functions

Questions:

what functions Rn → R do we know?

how to automatically calculate their gradient?

1 find some primitive building blocks Rn → Rm

2 find their jacobians/differentials analytically.
3 construct complex functions using composition
4 apply chain rule!
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Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...

element-wise operations
examples: x + y , x ∗ y , x

y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Building blocks

Let x , y ∈ Rn be input vector.

element-wise application ("map") of some scalar function.
examples: ex , x2, x + 1, 1

x ...
element-wise operations

examples: x + y , x ∗ y , x
y ...

scalar product
examples: 〈x , y〉, Ax

accumulating ("reduce") operations
examples: sum/max/min of all components

something special
examples: matrix inverse

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 18 / 26



Backpropagation

Chain Rule: setting

Given:

y(x) : Rn → Rm with jacobian ∇xy ∈ Rm×n at point x0
z(y) : Rm → Rk with jacobian ∇yz ∈ Rk×m at point y0

the task is to find jacobian ∇xz ∈ Rk×n of function

z(x) = z(y(x)) : Rn → Rk

at point x0.

Centralize everything:

∆x = x − x0

∆y = y − y0

∆z = z − z0
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Backpropagation

Chain Rule for jacobians

∆y = ∇xy∆x + ¯̄o(∆x)

∆z = ∇yz∆y + ¯̄o(∆y)

∆z = ∇xz∆x + ¯̄o(∆x)

Insert first in second:

∆z = ∇yz∇xy∆x +∇yz ¯̄o(∆x) + ¯̄o(∇xy∆x + ¯̄o(∆x)) =

= ∇yz∇xy∆x + ¯̄o(∆x)

Chain rule for jacobians

∇xz = ∇yz∇xy
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Backpropagation

Chain Rule for differentials

∆y = Dxy [∆x ] + ¯̄o(∆x)

∆z = Dyz [∆y ] + ¯̄o(∆y)

∆z = Dxz [∆x ] + ¯̄o(∆x)

Insert first in second:

∆z = Dyz [Dxy [∆x ]] + Dyz [¯̄o(∆x)] + ¯̄o(Dxy [∆x ] + ¯̄o(∆x)) =

= Dyz [Dxy [∆x ]] + ¯̄o(∆x)

Chain rule for differentials

Dxz [∆x ] = Dyz [Dxy [∆x ]]
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Backpropagation

Chain Rule intuition
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Backpropagation

Backpropagation
Backpropagation
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Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Automatic differentiation

Sergey Ivanov (617) MSU Deep Learning Concepts September 16, 2019 24 / 26



Backpropagation

Parallel computations

Let y = [y1, y2]:

∆L = ∇yL∆y + ¯̄o = ∇y1L∆y1 +∇y2L∆y2 + ¯̄o =

= ∇y1L∇xy1∆x +∇y2L∇xy2∆x + ¯̄o =

= (∇y1L∇xy1 +∇y2L∇xy2) ∆x + ¯̄o
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Backpropagation

Arbitrary graphs
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