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Content inspection system

Introduction

=

e Classifieds become more and more popular

e Human moderation of all income flow of ads becomes unrealistic

e Complex approach for automatic moderation based on machine
learning methods required
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Content inspection system Task definition

Data description

Each ad d; is described by 6 groups of data:

Title and description texts

Placement of an ad in catalog - category and additional attributes

Geographic location - region, city, district

Requested ad price

Provided images

Contact information of the seller.

Based on this data vector of numeric features f = (fi,..., fn) is
constructed. Feature preparation logic is unique for each group of data.
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Task definition
Task definition

e Each individual ad is checked to comply with a set of rules

e We need to historical collection of ads predictive model for each reject
reason

e It is required for each model to predict one number - reject probability
p € [0,1] for corresponding reason

e D=(dy,...,dy) - historical collection of ads

e Each ad d; is classified (belongs) to a single category, {¢; 1‘1561 -

possible item categories (Cars, Real Estate, Personal belongings, etc.)

e For eac_h ad di' we .know human decision vector
gi = (y’ia ce 73/;-)73/; € {07 1}

22 Avito

|.Guz,V.Leksin,M.Trofimov,A.Fenster (Avito) Evolution of content moderation approaches 23.09.2015 5/ 14




Content inspection system Prediction models overview

Prediction models overview

The following classes of algorithms are implemented in our system:

Text classification models

Wrong category models
Price prediction models

Duplicates models

Image prediction models
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Price prediction model BRESSCEITNe}

Cars pricing model

FavgPrice’: 324988.9952606635,
CarModel: “priceStatus”; 1€—

] [oetparams “estinationslice*: { p""'e's“'g"
“State": "He OuTuil
“Mileage": 160 600 - 169 999",
*EngineType": *Benausoauit®,
“Year0fCar":
'Eng)ne(apauly 1617

n
“medianPrice": 325000.0

2007

Mileage:

[100000- 108 398
distributionIntervals:
2

Given data:
e Set of possible parameters of cars
e Information about specific cars and prices

Task: Construct a query to the database, the result of which would
contain not less than N objects that are close to original . Avrto
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Task definition
Task definition

Lets

F; — partially ordered set of possible values of i-th car parameter

Slice p — ordered set of k elements (a;,b;),a; € F;,b; € F;,a; < b;

Entering the relation of embedded slices:
picpj:¥me (L, k) ap >am, by, <by

X ={((p1,--,pk),y)} - set of cars in the database, y € R — car price

T'(p) — true price distribution for the parameters slice

S(p): P — 2% - set of cars in parameters slice
We need to find:

e p(p): p(p) = mins Dist(T(p), T(p)) w.rt. [S(P)|>N
%2 Avito
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Price prediction model Data preparation and model training

Data preparation

Actual ads that were active on the site for more than a days and less
than b days

Last date of activity within last n days

Not blocked by moderators

Filter price biases
Final sample: 2035437 ads

22 Avito

|.Guz,V.Leksin,M.Trofimov,A.Fenster (Avito) Evolution of content moderation approaches 23.09.2015 9 /14




P e A
Model training

e Trained decision tree regressor for each car model with minimum leaf
size equals to M =20

e Cars that fall into the same tree leaf are similar because they have
similar price and each leaf is defined by a set of rules on car
characteristics which we identified as a slice we were looking for

e We selected best decision tree training method that minimized
RMSLE on the training data.

e |t could not overfit because we had restriction on a minimum leaf size
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Price prediction model Data preparation and model training

A fragment of decision trees

Year <= 30003000
0.0645

Year <= 20015000

Mileage <= 105000.0000 ‘

samples = 642 samples = 1087
inse = 02087 Year <= 1999.5000
samples = e = 0049209250009
v e s3] samples
EngineCapacity <= 1.7000 EngineCapacity <= 19500 Mileage <= 125000.0000
2 mse = 0.0856911607703
samples = 162 samples =419 samples = 229 samples = 336
e = 00301 ‘mse = 0.0500 1850000000 | [ Milesge <= 153000 EngineCapacity <= 16500 e = 0,039 mse = Micage < 1450000000
samples =95 0.0475543313078 G Ssontnm08T ‘mse = 0.0404355108706 samples = 92 samples =91 0981246616243
value = [ i1 msww value = [12.01110027) samples = 141 samples =278 3 value = [ 12.07965533] | | value = [12.02607492] samples =245
mse = 0.0233 Mileage <= 1450000000 e =004% mse = 0.0439 mse =0.0345

s = 0.0501178002507
samples = 186

samples

samples samples = § =9 samples =77 ples = 60
value = [ 12.1232588] | | value =[ 120420213 \‘alue'HZlH(ﬂWl&] value = [12.10227846] | | value =[ 12.15420299]

‘mse =00424
samples =
value = [ 12.04723366]

Mileage <= 165000.0000
mee = uusmmsoexs
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et
Model testing

We compared two models:
e Decision Tree Regressor

e Linear Regression with L1-regularization (Lasso)

Model name RMSLE by car model RMSLE entire
Decision Tree Regressor 0.297 0.268
Lasso 0.295 0.269

Probability of an incorrect price is determined by user-specified price
deviation from predicted price.
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Conclusions Moderation automation

Moderation automation

For each reject reason j € 1,...,r we trained the model m; that predicts
reject probability pz- for each ad d;. Also for each reason j we need to
define 0% € [0, 1) - automatic allow threshold and 47 € (6%, 1] - automatic
reject threshold. Based on these definitions final automatic verification
decision M (d;) should be taken using following logic:

Vi :pz- < 5}1 = Allow

33 :p;- > 6;-" = Reject
M(d;) = Recommend to reject
else

for reason j = argmax p
J
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Conclusions

Questions

Thank you!
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